These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 32615863)

  • 1. Empirical mean curve decomposition with multiwavelet transformation for eye movements recognition using electrooculogram signals.
    Mulam H; Mudigonda M
    Proc Inst Mech Eng H; 2020 Aug; 234(8):794-811. PubMed ID: 32615863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EOG-based eye movement recognition using GWO-NN optimization.
    Mulam H; Mudigonda M
    Biomed Tech (Berl); 2020 Jan; 65(1):11-22. PubMed ID: 31393829
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DESIGN AND DEVELOPMENT OF HUMAN COMPUTER INTERFACE USING ELECTROOCULOGRAM WITH DEEP LEARNING.
    Teng G; He Y; Zhao H; Liu D; Xiao J; Ramkumar S
    Artif Intell Med; 2020 Jan; 102():101765. PubMed ID: 31980102
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Feature selection in classification of eye movements using electrooculography for activity recognition.
    Mala S; Latha K
    Comput Math Methods Med; 2014; 2014():713818. PubMed ID: 25574185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Design of a Wearable Eye-Movement Detection System Based on Electrooculography Signals and Its Experimental Validation.
    Lin CT; Jiang WL; Chen SF; Huang KC; Liao LD
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562933
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal identification system for developing rehabilitative device using deep learning algorithms.
    Tang W; Wang A; Ramkumar S; Nair RKR
    Artif Intell Med; 2020 Jan; 102():101755. PubMed ID: 31980094
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel approach for detection of dyslexia using convolutional neural network with EOG signals.
    Ileri R; Latifoğlu F; Demirci E
    Med Biol Eng Comput; 2022 Nov; 60(11):3041-3055. PubMed ID: 36063351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling a human-computer interface system with a novel classification method that uses electrooculography signals.
    Wu SL; Liao LD; Lu SW; Jiang WL; Chen SA; Lin CT
    IEEE Trans Biomed Eng; 2013 Aug; 60(8):2133-41. PubMed ID: 23446030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An electrooculogram-based binary saccade sequence classification (BSSC) technique for augmentative communication and control.
    Keegan J; Burke E; Condron J
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2604-7. PubMed ID: 19965222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Eye Movement Signal Classification for Developing Human-Computer Interface Using Electrooculogram.
    Thilagaraj M; Dwarakanath B; Ramkumar S; Karthikeyan K; Prabhu A; Saravanakumar G; Rajasekaran MP; Arunkumar N
    J Healthc Eng; 2021; 2021():7901310. PubMed ID: 34925741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classification.
    Martínez-Cerveró J; Ardali MK; Jaramillo-Gonzalez A; Wu S; Tonin A; Birbaumer N; Chaudhary U
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensory system for implementing a human-computer interface based on electrooculography.
    Barea R; Boquete L; Rodriguez-Ascariz JM; Ortega S; López E
    Sensors (Basel); 2011; 11(1):310-28. PubMed ID: 22346579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Affordable Method for Evaluation of Ataxic Disorders Based on Electrooculography.
    López A; Ferrero F; Postolache O
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480331
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrooculograms for Human-Computer Interaction: A Review.
    Chang WD
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31207949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combining genetic algorithm and Levenberg-Marquardt algorithm in training neural network for hypoglycemia detection using EEG signals.
    Nguyen LB; Nguyen AV; Ling SH; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():5386-9. PubMed ID: 24110953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. EOG-sEMG Human Interface for Communication.
    Tamura H; Yan M; Sakurai K; Tanno K
    Comput Intell Neurosci; 2016; 2016():7354082. PubMed ID: 27418924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Single-Channel EOG-Based Speller.
    He S; Li Y
    IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):1978-1987. PubMed ID: 28641264
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Eye Motion Sequence Recognition Using Electrooculography Based on Context-Dependent HMM.
    Fang F; Shinozaki T; Horiuchi Y; Kuroiwa S; Furui S; Musha T
    Comput Intell Neurosci; 2016; 2016():6898031. PubMed ID: 27774099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Removal of Eye Movement and Blink Artifacts from EEG Data Using Morphological Component Analysis.
    Singh B; Wagatsuma H
    Comput Math Methods Med; 2017; 2017():1861645. PubMed ID: 28194221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Wearable Forehead EOG Measurement System for Human Computer Interfaces.
    Heo J; Yoon H; Park KS
    Sensors (Basel); 2017 Jun; 17(7):. PubMed ID: 28644398
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.