BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 32615881)

  • 1. Exogenous siRNAs against chitin synthase gene suppress the growth of the pathogenic fungus
    Forster H; Shuai B
    Mycologia; 2020; 112(4):699-710. PubMed ID: 32615881
    [No Abstract]   [Full Text] [Related]  

  • 2. Nitric oxide production by necrotrophic pathogen Macrophomina phaseolina and the host plant in charcoal rot disease of jute: complexity of the interplay between necrotroph-host plant interactions.
    Sarkar TS; Biswas P; Ghosh SK; Ghosh S
    PLoS One; 2014; 9(9):e107348. PubMed ID: 25208092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facets of rhizospheric microflora in biocontrol of phytopathogen Macrophomina phaseolina in oil crop soybean.
    Dave K; Gothalwal R; Singh M; Joshi N
    Arch Microbiol; 2021 Mar; 203(2):405-412. PubMed ID: 32965527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxin Production in Soybean (
    Abbas HK; Bellaloui N; Accinelli C; Smith JR; Shier WT
    Toxins (Basel); 2019 Nov; 11(11):. PubMed ID: 31698804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Harpin-inducible defense signaling components impair infection by the ascomycete Macrophomina phaseolina.
    Lawaju BR; Lawrence KS; Lawrence GW; Klink VP
    Plant Physiol Biochem; 2018 Aug; 129():331-348. PubMed ID: 29936240
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Necrotrophic Fungus Macrophomina phaseolina Promotes Charcoal Rot Susceptibility in Grain Sorghum Through Induced Host Cell-Wall-Degrading Enzymes.
    Bandara YMAY; Weerasooriya DK; Liu S; Little CR
    Phytopathology; 2018 Aug; 108(8):948-956. PubMed ID: 29465007
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Draft Genome Resource for
    Purushotham N; Jones A; Poudel B; Nasim J; Adorada D; Sparks A; Schwessinger B; Vaghefi N
    Mol Plant Microbe Interact; 2020 May; 33(5):724-726. PubMed ID: 32096690
    [No Abstract]   [Full Text] [Related]  

  • 8. Necrotrophic fungus Macrophomina phaseolina tolerates chromium stress through regulating antioxidant enzymes and genes expression (MSN1 and MT).
    Shoaib A; Nisar Z; Nafisa ; Javaid A; Khurshid S; Javed S
    Environ Sci Pollut Res Int; 2019 Apr; 26(12):12446-12458. PubMed ID: 30847809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro growth and cell wall degrading enzyme production by Argentinean isolates of Macrophomina phaseolina, the causative agent of charcoal rot in corn.
    Ramos AM; Gally M; Szapiro G; Itzcovich T; Carabajal M; Levin L
    Rev Argent Microbiol; 2016; 48(4):267-273. PubMed ID: 27825736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superoxide Initiates the Hyphal Differentiation to Microsclerotia Formation of
    Liu HH; Huang CC; Lin YH; Tseng MN; Chang HX
    Microbiol Spectr; 2022 Feb; 10(1):e0208421. PubMed ID: 35080446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AFLP analysis of genetic diversity in charcoal rot fungal populations impacted by crop rotations.
    Brooker N; Lord JR; Long J; Jayawardhana A
    Commun Agric Appl Biol Sci; 2008; 73(2):7-19. PubMed ID: 19226737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of reference genes and their validation for gene expression analysis in phytopathogenic fungus Macrophomina phaseolina.
    Orrego A; Gavilán MC; Arévalos A; Ortíz B; Gaete Humada B; Pineda-Fretez A; Romero-Rodríguez MC; Flores Giubi ME; Kohli MM; Iehisa JCM
    PLoS One; 2022; 17(8):e0272603. PubMed ID: 35930568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histopathological changes in root and stem of mungbean exposed to Macrophomina phaseolina and dry biomass of Chenopodium quinoa.
    Khan IH; Javaid A
    Microsc Res Tech; 2022 Jul; 85(7):2596-2606. PubMed ID: 35366387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic differentiation of charcoal rot pathogen, Macrophomina phaseolina, into specific groups using URP-PCR.
    Jana TK; Singh NK; Koundal KR; Sharma TR
    Can J Microbiol; 2005 Feb; 51(2):159-64. PubMed ID: 16091774
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Secretome analysis identified extracellular superoxide dismutase and catalase of Macrophomina phaseolina.
    Sinha N; Patra SK; Sarkar TS; Ghosh S
    Arch Microbiol; 2021 Dec; 204(1):62. PubMed ID: 34940926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of charcoal rot in soybean by moderately halotolerant Pseudomonas aeruginosa GS-33 under saline conditions.
    Patil S; Paradeshi J; Chaudhari B
    J Basic Microbiol; 2016 Aug; 56(8):889-99. PubMed ID: 27213894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of double stranded RNA in phytopathogenic Macrophomina phaseolina causing charcoal rot in Cyamopsis tetragonoloba.
    Arora P; Dilbaghi N; Chaudhury A
    Mol Biol Rep; 2012 Mar; 39(3):3047-54. PubMed ID: 21695431
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Secretome Analysis of
    Sinha N; Patra SK; Ghosh S
    Front Microbiol; 2022; 13():847832. PubMed ID: 35479629
    [No Abstract]   [Full Text] [Related]  

  • 19. First Report of Charcoal Rot Caused by Macrophomina phaseolina on Mungbean in China.
    Zhang JQ; Zhu ZD; Duan CX; Wang XM; Li HJ
    Plant Dis; 2011 Jul; 95(7):872. PubMed ID: 30731731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tools to kill: genome of one of the most destructive plant pathogenic fungi Macrophomina phaseolina.
    Islam MS; Haque MS; Islam MM; Emdad EM; Halim A; Hossen QM; Hossain MZ; Ahmed B; Rahim S; Rahman MS; Alam MM; Hou S; Wan X; Saito JA; Alam M
    BMC Genomics; 2012 Sep; 13():493. PubMed ID: 22992219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.