BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 32616430)

  • 1. Magnetorheological Gel Mimicking Cervical Ripening as a Potential Model for Evaluating Shear Wave Elastography.
    Ge W; Brooker G; Woo J; Rae W; Liu Y; Hyett J
    Ultrasound Med Biol; 2020 Sep; 46(9):2472-2480. PubMed ID: 32616430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anisotropic polyvinyl alcohol hydrogel phantom for shear wave elastography in fibrous biological soft tissue: a multimodality characterization.
    Chatelin S; Bernal M; Deffieux T; Papadacci C; Flaud P; Nahas A; Boccara C; Gennisson JL; Tanter M; Pernot M
    Phys Med Biol; 2014 Nov; 59(22):6923-40. PubMed ID: 25350315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of oil-in-gelatin phantoms for viscoelasticity measurement in ultrasound shear wave elastography.
    Nguyen MM; Zhou S; Robert JL; Shamdasani V; Xie H
    Ultrasound Med Biol; 2014 Jan; 40(1):168-76. PubMed ID: 24139915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification process based on shear wave propagation within a phantom using finite element modelling and magnetic resonance elastography.
    Leclerc GE; Charleux F; Ho Ba Tho MC; Bensamoun SF
    Comput Methods Biomech Biomed Engin; 2015; 18(5):485-91. PubMed ID: 23947476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kelvin-Voigt Parameters Reconstruction of Cervical Tissue-Mimicking Phantoms Using Torsional Wave Elastography.
    Callejas A; Gomez A; Faris IH; Melchor J; Rus G
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31349721
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of anisotropic mechanical properties in porcine brain white matter ex vivo using magnetic resonance elastography.
    Schmidt JL; Tweten DJ; Badachhape AA; Reiter AJ; Okamoto RJ; Garbow JR; Bayly PV
    J Mech Behav Biomed Mater; 2018 Mar; 79():30-37. PubMed ID: 29253729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrasound-based transient elastography compared to magnetic resonance elastography in soft tissue-mimicking gels.
    Oudry J; Vappou J; Choquet P; Willinger R; Sandrin L; Constantinesco A
    Phys Med Biol; 2009 Nov; 54(22):6979-90. PubMed ID: 19887718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of quantitative shear wave MR-elastography with mechanical compression tests.
    Hamhaber U; Grieshaber FA; Nagel JH; Klose U
    Magn Reson Med; 2003 Jan; 49(1):71-7. PubMed ID: 12509821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of viscosity estimation for oil-in-gelatin phantom in shear wave based ultrasound elastography.
    Zhu Y; Dong C; Yin Y; Chen X; Guo Y; Zheng Y; Shen Y; Wang T; Zhang X; Chen S
    Ultrasound Med Biol; 2015 Feb; 41(2):601-9. PubMed ID: 25542484
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic Resonance Elastography Reconstruction for Anisotropic Tissues.
    Babaei B; Fovargue D; Lloyd RA; Miller R; Jugé L; Kaplan M; Sinkus R; Nordsletten DA; Bilston LE
    Med Image Anal; 2021 Dec; 74():102212. PubMed ID: 34587584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Scholte wave approach for ultrasonic surface acoustic wave elastography.
    Liu J; Leer J; Aglayomov SR; Emelianov SY
    Med Phys; 2023 Jul; 50(7):4138-4150. PubMed ID: 36971512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anisotropic composite material phantom to improve skeletal muscle characterization using magnetic resonance elastography.
    Guidetti M; Lorgna G; Hammersly M; Lewis P; Klatt D; Vena P; Shah R; Royston TJ
    J Mech Behav Biomed Mater; 2019 Jan; 89():199-208. PubMed ID: 30292169
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dispersion in Tissue-Mimicking Gels Measured with Shear Wave Elastography and Torsional Vibration Rheometry.
    Yengul SS; Barbone PE; Madore B
    Ultrasound Med Biol; 2019 Feb; 45(2):586-604. PubMed ID: 30473175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance Study of a Torsional Wave Sensor and Cervical Tissue Characterization.
    Callejas A; Gomez A; Melchor J; Riveiro M; Massó P; Torres J; López-López MT; Rus G
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28891995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue mimicking materials for the detection of prostate cancer using shear wave elastography: a validation study.
    Cao R; Huang Z; Varghese T; Nabi G
    Med Phys; 2013 Feb; 40(2):022903. PubMed ID: 23387774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of biomechanical properties of agar based tissue mimicking phantoms for ultrasound stiffness imaging techniques.
    Manickam K; Machireddy RR; Seshadri S
    J Mech Behav Biomed Mater; 2014 Jul; 35():132-43. PubMed ID: 24769915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic resonance elastography in nonlinear viscoelastic materials under load.
    Capilnasiu A; Hadjicharalambous M; Fovargue D; Patel D; Holub O; Bilston L; Screen H; Sinkus R; Nordsletten D
    Biomech Model Mechanobiol; 2019 Feb; 18(1):111-135. PubMed ID: 30151814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft tissue rheology and its implications for elastography: Challenges and opportunities.
    Bilston LE
    NMR Biomed; 2018 Oct; 31(10):e3832. PubMed ID: 28991387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supersonic transient magnetic resonance elastography for quantitative assessment of tissue elasticity.
    Liu Y; Liu J; Fite BZ; Foiret J; Ilovitsh A; Leach JK; Dumont E; Caskey CF; Ferrara KW
    Phys Med Biol; 2017 May; 62(10):4083-4106. PubMed ID: 28426437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Guidelines for Finite-Element Modeling of Acoustic Radiation Force-Induced Shear Wave Propagation in Tissue-Mimicking Media.
    Palmeri ML; Qiang B; Chen S; Urban MW
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Jan; 64(1):78-92. PubMed ID: 28026760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.