These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 32616569)

  • 1. Extensive sequence and structural evolution of Arginase 2 inhibitory antibodies enabled by an unbiased approach to affinity maturation.
    Chan DTY; Jenkinson L; Haynes SW; Austin M; Diamandakis A; Burschowsky D; Seewooruthun C; Addyman A; Fiedler S; Ryman S; Whitehouse J; Slater LH; Gowans E; Shibata Y; Barnard M; Wilkinson RW; Vaughan TJ; Holt SV; Cerundolo V; Carr MD; Groves MAT
    Proc Natl Acad Sci U S A; 2020 Jul; 117(29):16949-16960. PubMed ID: 32616569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel heavy domain antibody library with functionally optimized complementarity determining regions.
    Mandrup OA; Friis NA; Lykkemark S; Just J; Kristensen P
    PLoS One; 2013; 8(10):e76834. PubMed ID: 24116173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity maturation: highlights in the application of in vitro strategies for the directed evolution of antibodies.
    Chan DTY; Groves MAT
    Emerg Top Life Sci; 2021 Nov; 5(5):601-608. PubMed ID: 33660765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arginine mutations in antibody complementarity-determining regions display context-dependent affinity/specificity trade-offs.
    Tiller KE; Li L; Kumar S; Julian MC; Garde S; Tessier PM
    J Biol Chem; 2017 Oct; 292(40):16638-16652. PubMed ID: 28778924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing a protein-protein interaction by in vitro evolution.
    Thom G; Cockroft AC; Buchanan AG; Candotti CJ; Cohen ES; Lowne D; Monk P; Shorrock-Hart CP; Jermutus L; Minter RR
    Proc Natl Acad Sci U S A; 2006 May; 103(20):7619-24. PubMed ID: 16684878
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity.
    Groves MA; Amanuel L; Campbell JI; Rees DG; Sridharan S; Finch DK; Lowe DC; Vaughan TJ
    MAbs; 2014; 6(1):236-45. PubMed ID: 24256948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Affinity maturation of a humanized rat antibody for anti-RAGE therapy: comprehensive mutagenesis reveals a high level of mutational plasticity both inside and outside the complementarity-determining regions.
    Finlay WJ; Cunningham O; Lambert MA; Darmanin-Sheehan A; Liu X; Fennell BJ; Mahon CM; Cummins E; Wade JM; O'Sullivan CM; Tan XY; Piche N; Pittman DD; Paulsen J; Tchistiakova L; Kodangattil S; Gill D; Hufton SE
    J Mol Biol; 2009 May; 388(3):541-58. PubMed ID: 19285987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies.
    Rothe C; Urlinger S; Löhning C; Prassler J; Stark Y; Jäger U; Hubner B; Bardroff M; Pradel I; Boss M; Bittlingmaier R; Bataa T; Frisch C; Brocks B; Honegger A; Urban M
    J Mol Biol; 2008 Feb; 376(4):1182-200. PubMed ID: 18191144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phage-displayed antibody libraries of synthetic heavy chain complementarity determining regions.
    Sidhu SS; Li B; Chen Y; Fellouse FA; Eigenbrot C; Fuh G
    J Mol Biol; 2004 Apr; 338(2):299-310. PubMed ID: 15066433
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving antibody binding affinity and specificity for therapeutic development.
    Bostrom J; Lee CV; Haber L; Fuh G
    Methods Mol Biol; 2009; 525():353-76, xiii. PubMed ID: 19252851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering a high-affinity anti-IL-15 antibody: crystal structure reveals an α-helix in VH CDR3 as key component of paratope.
    Lowe DC; Gerhardt S; Ward A; Hargreaves D; Anderson M; Ferraro F; Pauptit RA; Pattison DV; Buchanan C; Popovic B; Finch DK; Wilkinson T; Sleeman M; Vaughan TJ; Mallinder PR
    J Mol Biol; 2011 Feb; 406(1):160-75. PubMed ID: 21167836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Repertoire Analysis of Antibody CDR-H3 Loops Suggests Affinity Maturation Does Not Typically Result in Rigidification.
    Jeliazkov JR; Sljoka A; Kuroda D; Tsuchimura N; Katoh N; Tsumoto K; Gray JJ
    Front Immunol; 2018; 9():413. PubMed ID: 29545810
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Affinity maturation of antibodies by combinatorial codon mutagenesis versus error-prone PCR.
    Simons JF; Lim YW; Carter KP; Wagner EK; Wayham N; Adler AS; Johnson DS
    MAbs; 2020; 12(1):1803646. PubMed ID: 32744131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Initial repertoire of anti-(4-hydroxy-3-nitrophenylacetyl) antibodies as potential donors for effective affinity maturation.
    Furukawa K; Manabe A; Furukawa A; Kuba H; Okajima T; Azuma T
    Mol Immunol; 2006 Apr; 43(11):1751-60. PubMed ID: 16406527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient affinity maturation of antibody variable domains requires co-selection of compensatory mutations to maintain thermodynamic stability.
    Julian MC; Li L; Garde S; Wilen R; Tessier PM
    Sci Rep; 2017 Mar; 7():45259. PubMed ID: 28349921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Significance of antibody numbering systems in the development of antibody engineering.
    Patel R; Verma P; Nagraj AK; Gavade A; Sharma OP; Patil J
    Hum Antibodies; 2023; 31(4):71-80. PubMed ID: 38217590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical basis for the affinity maturation of a camel single domain antibody.
    De Genst E; Handelberg F; Van Meirhaeghe A; Vynck S; Loris R; Wyns L; Muyldermans S
    J Biol Chem; 2004 Dec; 279(51):53593-601. PubMed ID: 15383540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Drug-like antibodies with high affinity, diversity and developability directly from next-generation antibody libraries.
    Azevedo Reis Teixeira A; Erasmus MF; D'Angelo S; Naranjo L; Ferrara F; Leal-Lopes C; Durrant O; Galmiche C; Morelli A; Scott-Tucker A; Bradbury ARM
    MAbs; 2021; 13(1):1980942. PubMed ID: 34850665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural and genetic basis for development of broadly neutralizing influenza antibodies.
    Lingwood D; McTamney PM; Yassine HM; Whittle JR; Guo X; Boyington JC; Wei CJ; Nabel GJ
    Nature; 2012 Sep; 489(7417):566-70. PubMed ID: 22932267
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro molecular evolution of antibody genes mimicking receptor revision.
    Ellmark P; Esteban O; Furebring C; Malmborg Hager AC; Ohlin M
    Mol Immunol; 2002 Oct; 39(5-6):349-56. PubMed ID: 12220892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.