These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 32616669)

  • 1. Accelerating water dissociation in bipolar membranes and for electrocatalysis.
    Oener SZ; Foster MJ; Boettcher SW
    Science; 2020 Aug; 369(6507):1099-1103. PubMed ID: 32616669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design principles for water dissociation catalysts in high-performance bipolar membranes.
    Chen L; Xu Q; Oener SZ; Fabrizio K; Boettcher SW
    Nat Commun; 2022 Jul; 13(1):3846. PubMed ID: 35788131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Multi-Ion Transport Mechanisms in Bipolar Membranes.
    Bui JC; Digdaya I; Xiang C; Bell AT; Weber AZ
    ACS Appl Mater Interfaces; 2020 Nov; 12(47):52509-52526. PubMed ID: 33169965
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vanadium Oxide Nanosheet-Infused Functionalized Polysulfone Bipolar Membrane for an Efficient Water Dissociation Reaction.
    Bhowmick S; Qureshi M
    ACS Appl Mater Interfaces; 2023 Feb; 15(4):5466-5477. PubMed ID: 36688585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Materials descriptors for advanced water dissociation catalysts in bipolar membranes.
    Sasmal S; Chen L; Sarma PV; Vulpin OT; Simons CR; Wells KM; Spontak RJ; Boettcher SW
    Nat Mater; 2024 Oct; 23(10):1421-1427. PubMed ID: 38951650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NiFe
    Wu Z; Zou Z; Huang J; Gao F
    ACS Appl Mater Interfaces; 2018 Aug; 10(31):26283-26292. PubMed ID: 30009602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Bipolar Interfaces for Water Electrolysis Using Earth-Abundant Anodes.
    Tricker AW; Lee JK; Babbe F; Shin JR; Weber AZ; Peng X
    ACS Energy Lett; 2023 Dec; 8(12):5275-5280. PubMed ID: 38094750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Dioxide and Water Electrolysis Using New Alkaline Stable Anion Membranes.
    Kaczur JJ; Yang H; Liu Z; Sajjad SD; Masel RI
    Front Chem; 2018; 6():263. PubMed ID: 30018951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Porous Cobalt-Nickel Hydroxide Nanosheets with Active Cobalt Ions for Overall Water Splitting.
    Wang X; Li Z; Wu DY; Shen GR; Zou C; Feng Y; Liu H; Dong CK; Du XW
    Small; 2019 Feb; 15(8):e1804832. PubMed ID: 30714319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring the Interface of Porous Cathode/Bipolar Membrane for Mitigation of Inorganic Precipitates in Direct Seawater Electrolysis.
    Han JH
    ChemSusChem; 2022 Jun; 15(11):e202200372. PubMed ID: 35332704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Remarkable Bifunctional Oxygen and Hydrogen Evolution Electrocatalytic Activities with Trace-Level Fe Doping in Ni- and Co-Layered Double Hydroxides for Overall Water-Splitting.
    Rajeshkhanna G; Singh TI; Kim NH; Lee JH
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42453-42468. PubMed ID: 30430830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bipolar Membranes Via Divergent Synthesis: On the Interplay between Ion Exchange Capacity and Water Dissociation Catalysis.
    Kao YL; Buchauer F; Serhiichuk D; Boettcher SW; Aili D
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):58637-58647. PubMed ID: 39412035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benchmarking Phases of Ruthenium Dichalcogenides for Electrocatalysis of Hydrogen Evolution: Theoretical and Experimental Insights.
    Zhang Z; Jiang C; Li P; Yao K; Zhao Z; Fan J; Li H; Wang H
    Small; 2021 Apr; 17(13):e2007333. PubMed ID: 33590693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation of a Bipolar Membrane in a Hybrid Acid/Alkali Electrolyzer Studied by X-ray Computed Tomography.
    Hong E; Zeng H; Qiao X; Deng L; Gu L; Wang J; Chen J; Guan M; Li M; Zhou Z; Yang C
    ACS Appl Mater Interfaces; 2024 Oct; 16(39):52414-52422. PubMed ID: 39302810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-Shell NiFe-LDH@NiFe-B
    Yang L; Xie L; Ge R; Kong R; Liu Z; Du G; Asiri AM; Yao Y; Luo Y
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19502-19506. PubMed ID: 28422477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intercalated Iridium Diselenide Electrocatalysts for Efficient pH-Universal Water Splitting.
    Zheng T; Shang C; He Z; Wang X; Cao C; Li H; Si R; Pan B; Zhou S; Zeng J
    Angew Chem Int Ed Engl; 2019 Oct; 58(41):14764-14769. PubMed ID: 31452325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bipolar Membrane Seawater Splitting for Hydrogen Production: A Review.
    Adisasmito S; Khoiruddin K; Sutrisna PD; Wenten IG; Siagian UWR
    ACS Omega; 2024 Apr; 9(13):14704-14727. PubMed ID: 38585051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient Overall Water-Splitting Electrocatalysis Using Lepidocrocite VOOH Hollow Nanospheres.
    Shi H; Liang H; Ming F; Wang Z
    Angew Chem Int Ed Engl; 2017 Jan; 56(2):573-577. PubMed ID: 27897374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. NiFe Hydroxide Supported on Hierarchically Porous Nickel Mesh as a High-Performance Bifunctional Electrocatalyst for Water Splitting at Large Current Density.
    Wang PC; Wan L; Lin YQ; Wang BG
    ChemSusChem; 2019 Sep; 12(17):4038-4045. PubMed ID: 31310446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. NiFeP nanoflakes composite with CoP on carbon cloth as flexible and durable electrocatalyst for efficient overall water splitting.
    Li M; Li S; Wang J; Wang C; Li W; Chu PK
    Nanotechnology; 2019 Nov; 30(48):485402. PubMed ID: 31430731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.