BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 32616799)

  • 1. Defining multiplicity of vector uptake in transfected Plasmodium parasites.
    Carrasquilla M; Adjalley S; Sanderson T; Marin-Menendez A; Coyle R; Montandon R; Rayner JC; Pance A; Lee MCS
    Sci Rep; 2020 Jul; 10(1):10894. PubMed ID: 32616799
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lyse-Reseal Erythrocytes for Transfection of Plasmodium falciparum.
    Govindarajalu G; Rizvi Z; Kumar D; Sijwali PS
    Sci Rep; 2019 Dec; 9(1):19952. PubMed ID: 31882761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transfection of the primate malaria parasite Plasmodium knowlesi using entirely heterologous constructs.
    van der Wel AM; Tomás AM; Kocken CH; Malhotra P; Janse CJ; Waters AP; Thomas AW
    J Exp Med; 1997 Apr; 185(8):1499-503. PubMed ID: 9126931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity of Plasmodium vivax promoter elements in Plasmodium knowlesi, and a centromere-containing plasmid that expresses NanoLuc throughout the parasite life cycle.
    Moraes Barros RR; Thawnashom K; Gibson TJ; Armistead JS; Caleon RL; Kaneko M; Kite WA; Mershon JP; Brockhurst JK; Engels T; Lambert L; Orr-Gonzalez S; Adams JH; Sá JM; Kaneko O; Wellems TE
    Malar J; 2021 Jun; 20(1):247. PubMed ID: 34090438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of two methods for transformation of Plasmodium knowlesi: Direct schizont electroporation and spontaneous plasmid uptake from plasmid-loaded red blood cells.
    Moraes Barros RR; Gibson TJ; Kite WA; Sá JM; Wellems TE
    Mol Biochem Parasitol; 2017 Dec; 218():16-22. PubMed ID: 28988930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of experimental genetics approaches for Plasmodium berghei with versatile transfection vectors.
    Kooij TW; Rauch MM; Matuschewski K
    Mol Biochem Parasitol; 2012 Sep; 185(1):19-26. PubMed ID: 22705315
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Yeast dihydroorotate dehydrogenase as a new selectable marker for Plasmodium falciparum transfection.
    Ganesan SM; Morrisey JM; Ke H; Painter HJ; Laroiya K; Phillips MA; Rathod PK; Mather MW; Vaidya AB
    Mol Biochem Parasitol; 2011 May; 177(1):29-34. PubMed ID: 21251930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfection of malaria parasites.
    Waters AP; Thomas AW; van Dijk MR; Janse CJ
    Methods; 1997 Oct; 13(2):134-47. PubMed ID: 9405197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Plasmodium falciparum transfection methods.
    Skinner-Adams TS; Lawrie PM; Hawthorne PL; Gardiner DL; Trenholme KR
    Malar J; 2003 Jun; 2():19. PubMed ID: 12869208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diversity and natural selection of Merozoite surface Protein-1 in three species of human malaria parasites: Contribution from South-East Asian isolates.
    Goh XT; Lim YAL; Lee PC; Nissapatorn V; Chua KH
    Mol Biochem Parasitol; 2021 Jul; 244():111390. PubMed ID: 34087264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transfection of Plasmodium falciparum.
    Rug M; Maier AG
    Methods Mol Biol; 2013; 923():75-98. PubMed ID: 22990772
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transfection of Plasmodium falciparum within human red blood cells.
    Wu Y; Sifri CD; Lei HH; Su XZ; Wellems TE
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):973-7. PubMed ID: 7862676
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid recombination among transfected plasmids, chimeric episome formation and trans gene expression in Plasmodium falciparum.
    Kadekoppala M; Cheresh P; Catron D; Ji DD; Deitsch K; Wellems TE; Seifert HS; Haldar K
    Mol Biochem Parasitol; 2001 Feb; 112(2):211-8. PubMed ID: 11223128
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Time course of in vitro maturation of intra-erythrocytic malaria parasite: a comparison between Plasmodium falciparum and Plasmodium knowlesi.
    Srinivas SD; Puri SK
    Mem Inst Oswaldo Cruz; 2002 Sep; 97(6):901-3. PubMed ID: 12386719
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterologous promoter activity in stable and transient Plasmodium knowlesi transgenes.
    Ozwara H; van der Wel A; Kocken CH; Thomas AW
    Mol Biochem Parasitol; 2003 Aug; 130(1):61-4. PubMed ID: 14550898
    [No Abstract]   [Full Text] [Related]  

  • 16. A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes.
    O'Donnell RA; Freitas-Junior LH; Preiser PR; Williamson DH; Duraisingh M; McElwain TF; Scherf A; Cowman AF; Crabb BS
    EMBO J; 2002 Mar; 21(5):1231-9. PubMed ID: 11867551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transfection of the human malaria parasite Plasmodium falciparum.
    Waterkeyn JG; Crabb BS; Cowman AF
    Int J Parasitol; 1999 Jun; 29(6):945-55. PubMed ID: 10480732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of the genetically tractable malaria pathogen Plasmodium knowlesi to continuous culture in human erythrocytes.
    Moon RW; Hall J; Rangkuti F; Ho YS; Almond N; Mitchell GH; Pain A; Holder AA; Blackman MJ
    Proc Natl Acad Sci U S A; 2013 Jan; 110(2):531-6. PubMed ID: 23267069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of split-dihydrofolate reductase for the detection of protein-protein interactions and simultaneous selection of multiple plasmids in Plasmodium falciparum.
    Levray YS; Berhe AD; Osborne AR
    Mol Biochem Parasitol; 2020 Jul; 238():111292. PubMed ID: 32505674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Plasmodium knowlesi MAHRP2 ortholog localizes to structures connecting Sinton Mulligan's clefts in the infected erythrocyte.
    Asare KK; Sakaguchi M; Lucky AB; Asada M; Miyazaki S; Katakai Y; Kawai S; Song C; Murata K; Yahata K; Kaneko O
    Parasitol Int; 2018 Aug; 67(4):481-492. PubMed ID: 29673877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.