These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 32617450)

  • 1. Analyses of Aliphatic Aldehydes and Ketones in Carbonaceous Chondrites.
    Aponte JC; Whitaker D; Powner MW; Elsila JE; Dworkin JP
    ACS Earth Space Chem; 2019 Mar; 3(3):463-472. PubMed ID: 32617450
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Distribution,
    Aponte JC; Woodward HK; Abreu NM; Elsila JE; Dworkin JP
    Meteorit Planet Sci; 2019 Feb; 54(2):415-430. PubMed ID: 32499671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compound-Specific Carbon Isotope Compositions of Aldehydes and Ketones in the Murchison Meteorite.
    Simkus DN; Aponte JC; Hilts RW; Elsila JE; Herd CDK
    Meteorit Planet Sci; 2019 Jan; 54(1):142-156. PubMed ID: 32440084
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distribution of Aliphatic Amines in CO, CV and CK Carbonaceous Chondrites and Relation to Mineralogy and Processing History.
    Aponte JC; Abreu NM; Glavin DP; Dworkin JP; Elsila JE
    Meteorit Planet Sci; 2017 Dec; 52(12):2632-2646. PubMed ID: 32440083
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accretion and differentiation of carbon in the early Earth.
    Tingle TN
    Chem Geol; 1998 May; 147(1-2):3-10. PubMed ID: 11543125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Strecker synthesis as a source of amino acids in carbonaceous chondrites: deuterium retention during synthesis.
    Lerner NR; Peterson E; Chang S
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4713-23. PubMed ID: 11539581
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methodologies for Analyzing Soluble Organic Compounds in Extraterrestrial Samples: Amino Acids, Amines, Monocarboxylic Acids, Aldehydes, and Ketones.
    Simkus DN; Aponte JC; Elsila JE; Parker ET; Glavin DP; Dworkin JP
    Life (Basel); 2019 Jun; 9(2):. PubMed ID: 31174308
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relative amino acid concentrations as a signature for parent body processes of carbonaceous chondrites.
    Botta O; Glavin DP; Kminek G; Bada JL
    Orig Life Evol Biosph; 2002 Apr; 32(2):143-63. PubMed ID: 12185673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular distribution of monocarboxylic acids in Asuka carbonaceous chondrites from Antarctica.
    Naraoka H; Shimoyama A; Harada K
    Orig Life Evol Biosph; 1999 Mar; 29(2):187-201. PubMed ID: 10391772
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromium isotopic insights into the origin of chondrite parent bodies and the early terrestrial volatile depletion.
    Zhu K; Moynier F; Schiller M; Alexander CMO; Davidson J; Schrader DL; van Kooten E; Bizzarro M
    Geochim Cosmochim Acta; 2021 May; 301():158-186. PubMed ID: 34393262
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between CM and CO chondrites: Insights from combined analyses of titanium, chromium, and oxygen isotopes in CM, CO, and ungrouped chondrites.
    Torrano ZA; Schrader DL; Davidson J; Greenwood RC; Dunlap DR; Wadhwa M
    Geochim Cosmochim Acta; 2021 May; 301():70-90. PubMed ID: 34316079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared and reflectron time-of-flight mass spectroscopic analysis of methane (CH4)-carbon monoxide (CO) ices exposed to ionization radiation--toward the formation of carbonyl-bearing molecules in extraterrestrial ices.
    Kaiser RI; Maity S; Jones BM
    Phys Chem Chem Phys; 2014 Feb; 16(8):3399-424. PubMed ID: 24322733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pathways to Meteoritic Glycine and Methylamine.
    Aponte JC; Elsila JE; Glavin DP; Milam SN; Charnley SB; Dworkin JP
    ACS Earth Space Chem; 2017 Mar; 1(1):3-13. PubMed ID: 32500112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extraterrestrial amino acids in Orgueil and Ivuna: tracing the parent body of CI type carbonaceous chondrites.
    Ehrenfreund P; Glavin DP; Botta O; Cooper G; Bada JL
    Proc Natl Acad Sci U S A; 2001 Feb; 98(5):2138-41. PubMed ID: 11226205
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic compounds in carbonaceous meteorites.
    Sephton MA
    Nat Prod Rep; 2002 Jun; 19(3):292-311. PubMed ID: 12137279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of amino acids, hydroxy acids, and amines in CR chondrites.
    Aponte JC; Elsila JE; Hein JE; Dworkin JP; Glavin DP; McLain HL; Parker ET; Cao T; Berger EL; Burton AS
    Meteorit Planet Sci; 2020 Nov; 55(11):2422-2439. PubMed ID: 33536738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life on Mars: chemical arguments and clues from Martian meteorites.
    Brack A; Pillinger CT
    Extremophiles; 1998 Aug; 2(3):313-9. PubMed ID: 9783179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of carbonaceous biomarkers with the Mars Organic Analyzer microchip capillary electrophoresis system: aldehydes and ketones.
    Stockton AM; Tjin CC; Huang GL; Benhabib M; Chiesl TN; Mathies RA
    Electrophoresis; 2010 Nov; 31(22):3642-9. PubMed ID: 20967779
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of polychromatic x-ray microtomography imaging on the amino acid content of the Murchison CM chondrite.
    Friedrich JM; McLain HL; Dworkin JP; Glavin DP; Towbin WH; Hill M; Ebel DS
    Meteorit Planet Sci; 2018; 54(1):220-228. PubMed ID: 31806926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhenium-osmium isotope systematics of carbonaceous chondrites.
    Walker RJ; Morgan JW
    Science; 1989 Jan; 243(4890):519-22. PubMed ID: 17799187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.