These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 32617796)

  • 1. Combi-CRISPR: combination of NHEJ and HDR provides efficient and precise plasmid-based knock-ins in mice and rats.
    Yoshimi K; Oka Y; Miyasaka Y; Kotani Y; Yasumura M; Uno Y; Hattori K; Tanigawa A; Sato M; Oya M; Nakamura K; Matsushita N; Kobayashi K; Mashimo T
    Hum Genet; 2021 Feb; 140(2):277-287. PubMed ID: 32617796
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair.
    He X; Tan C; Wang F; Wang Y; Zhou R; Cui D; You W; Zhao H; Ren J; Feng B
    Nucleic Acids Res; 2016 May; 44(9):e85. PubMed ID: 26850641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene Replacement by Intron Targeting with CRISPR-Cas9.
    Li J; Meng X; Li J; Gao C
    Methods Mol Biol; 2019; 1917():285-296. PubMed ID: 30610644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Methods Favoring Homology-Directed Repair Choice in Response to CRISPR/Cas9 Induced-Double Strand Breaks.
    Yang H; Ren S; Yu S; Pan H; Li T; Ge S; Zhang J; Xia N
    Int J Mol Sci; 2020 Sep; 21(18):. PubMed ID: 32899704
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from genomic integration of repair-template fragments.
    Boel A; De Saffel H; Steyaert W; Callewaert B; De Paepe A; Coucke PJ; Willaert A
    Dis Model Mech; 2018 Oct; 11(10):. PubMed ID: 30355591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating DNA Repair Pathways to Improve Precision Genome Engineering.
    Pawelczak KS; Gavande NS; VanderVere-Carozza PS; Turchi JJ
    ACS Chem Biol; 2018 Feb; 13(2):389-396. PubMed ID: 29210569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genome editing using CRISPR/Cas9-based knock-in approaches in zebrafish.
    Albadri S; Del Bene F; Revenu C
    Methods; 2017 May; 121-122():77-85. PubMed ID: 28300641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-mediated targeted knock-in of large constructs using nocodazole and RNase HII.
    Eghbalsaied S; Kues WA
    Sci Rep; 2023 Feb; 13(1):2690. PubMed ID: 36792645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Versatile and precise gene-targeting strategies for functional studies in mammalian cell lines.
    Wassef M; Luscan A; Battistella A; Le Corre S; Li H; Wallace MR; Vidaud M; Margueron R
    Methods; 2017 May; 121-122():45-54. PubMed ID: 28499832
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Harnessing accurate non-homologous end joining for efficient precise deletion in CRISPR/Cas9-mediated genome editing.
    Guo T; Feng YL; Xiao JJ; Liu Q; Sun XN; Xiang JF; Kong N; Liu SC; Chen GQ; Wang Y; Dong MM; Cai Z; Lin H; Cai XJ; Xie AY
    Genome Biol; 2018 Oct; 19(1):170. PubMed ID: 30340517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA.
    Richardson CD; Ray GJ; DeWitt MA; Curie GL; Corn JE
    Nat Biotechnol; 2016 Mar; 34(3):339-44. PubMed ID: 26789497
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A high-efficiency and versatile CRISPR/Cas9-mediated HDR-based biallelic editing system.
    Li X; Sun B; Qian H; Ma J; Paolino M; Zhang Z
    J Zhejiang Univ Sci B; 2022 Feb; 23(2):141-152. PubMed ID: 35187887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of homology-directed repair with chromatin donor templates in cells.
    Cruz-Becerra G; Kadonaga JT
    Elife; 2020 Apr; 9():. PubMed ID: 32343230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9 fusion to dominant-negative 53BP1 enhances HDR and inhibits NHEJ specifically at Cas9 target sites.
    Jayavaradhan R; Pillis DM; Goodman M; Zhang F; Zhang Y; Andreassen PR; Malik P
    Nat Commun; 2019 Jun; 10(1):2866. PubMed ID: 31253785
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibition of 53BP1 favors homology-dependent DNA repair and increases CRISPR-Cas9 genome-editing efficiency.
    Canny MD; Moatti N; Wan LCK; Fradet-Turcotte A; Krasner D; Mateos-Gomez PA; Zimmermann M; Orthwein A; Juang YC; Zhang W; Noordermeer SM; Seclen E; Wilson MD; Vorobyov A; Munro M; Ernst A; Ng TF; Cho T; Cannon PM; Sidhu SS; Sicheri F; Durocher D
    Nat Biotechnol; 2018 Jan; 36(1):95-102. PubMed ID: 29176614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome editing with the donor plasmid equipped with synthetic crRNA-target sequence.
    Ishibashi R; Abe K; Ido N; Kitano S; Miyachi H; Toyoshima F
    Sci Rep; 2020 Aug; 10(1):14120. PubMed ID: 32839482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Harnessing endogenous repair mechanisms for targeted gene knock-in of bovine embryos.
    Owen JR; Hennig SL; McNabb BR; Lin JC; Young AE; Murray JD; Ross PJ; Van Eenennaam AL
    Sci Rep; 2020 Sep; 10(1):16031. PubMed ID: 32994506
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous precise editing of multiple genes in human cells.
    Riesenberg S; Chintalapati M; Macak D; Kanis P; Maricic T; Pääbo S
    Nucleic Acids Res; 2019 Nov; 47(19):e116. PubMed ID: 31392986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of transgenic Daphnia magna for visualizing homology-directed repair of DNA.
    Fatimah RM; Adhitama N; Kato Y; Watanabe H
    Sci Rep; 2022 Feb; 12(1):2497. PubMed ID: 35169221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.