BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 32617930)

  • 1. Formation of Cellulose-Based Composites with Hemicelluloses and Pectins Using Komagataeibacter Fermentation.
    Mikkelsen D; Lopez-Sanchez P; Wang D; Gidley MJ
    Methods Mol Biol; 2020; 2149():73-87. PubMed ID: 32617930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of cellulose-based composites with hemicelluloses and pectins using Gluconacetobacter fermentation.
    Mikkelsen D; Gidley MJ
    Methods Mol Biol; 2011; 715():197-208. PubMed ID: 21222086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions.
    Tan MS; Moore SC; Tabor RF; Fegan N; Rahman S; Dykes GA
    BMC Microbiol; 2016 Sep; 16():212. PubMed ID: 27629769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of primary plant cell wall analogues.
    Chanliaud E; Burrows KM; Jeronimidis G; Gidley MJ
    Planta; 2002 Oct; 215(6):989-96. PubMed ID: 12355159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of arabinoxylan and (1,3)(1,4)-β-glucan with cellulose networks.
    Mikkelsen D; Flanagan BM; Wilson SM; Bacic A; Gidley MJ
    Biomacromolecules; 2015 Apr; 16(4):1232-9. PubMed ID: 25756836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simultaneous influence of pectin and xyloglucan on structure and mechanical properties of bacterial cellulose composites.
    Szymańska-Chargot M; Chylińska M; Cybulska J; Kozioł A; Pieczywek PM; Zdunek A
    Carbohydr Polym; 2017 Oct; 174():970-979. PubMed ID: 28821155
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aluminium effects on mechanical properties of cell wall analogues.
    McKenna BA; Wehr JB; Mikkelsen D; Blamey FP; Menzies NW
    Physiol Plant; 2016 Dec; 158(4):382-388. PubMed ID: 27213484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for in vitro binding of pectin side chains to cellulose.
    Zykwinska AW; Ralet MC; Garnier CD; Thibault JF
    Plant Physiol; 2005 Sep; 139(1):397-407. PubMed ID: 16126855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate Use Prioritization by a Coculture of Five Species of Gut Bacteria Fed Mixtures of Arabinoxylan, Xyloglucan, β-Glucan, and Pectin.
    Liu Y; Heath AL; Galland B; Rehrer N; Drummond L; Wu XY; Bell TJ; Lawley B; Sims IM; Tannock GW
    Appl Environ Microbiol; 2020 Jan; 86(2):. PubMed ID: 31676481
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of arabinan or galactan during cellulose synthesis is extensive and reversible.
    Lin D; Lopez-Sanchez P; Gidley MJ
    Carbohydr Polym; 2015 Aug; 126():108-21. PubMed ID: 25933529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biosynthesis and wall-binding of hemicelluloses in cellulose-deficient maize cells: an example of metabolic plasticity.
    de Castro M; Miller JG; Acebes JL; Encina A; García-Angulo P; Fry SC
    J Integr Plant Biol; 2015 Apr; 57(4):373-87. PubMed ID: 25611087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
    Machado RTA; Gutierrez J; Tercjak A; Trovatti E; Uahib FGM; Moreno GP; Nascimento AP; Berreta AA; Ribeiro SJL; Barud HS
    Carbohydr Polym; 2016 Nov; 152():841-849. PubMed ID: 27516336
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensile deformation of bacterial cellulose composites.
    Astley OM; Chanliaud E; Donald AM; Gidley MJ
    Int J Biol Macromol; 2003 Mar; 32(1-2):28-35. PubMed ID: 12719129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.
    Lin SP; Huang YH; Hsu KD; Lai YJ; Chen YK; Cheng KC
    Carbohydr Polym; 2016 Oct; 151():827-833. PubMed ID: 27474630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Ceratopteris (fern) developing motile gamete walls contain diverse polysaccharides, but not pectin.
    Lopez RA; Renzaglia KS
    Planta; 2018 Feb; 247(2):393-404. PubMed ID: 29027584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Re-constructing our models of cellulose and primary cell wall assembly.
    Cosgrove DJ
    Curr Opin Plant Biol; 2014 Dec; 22():122-131. PubMed ID: 25460077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state 13C NMR study of a composite of tobacco xyloglucan and Gluconacetobacter xylinus cellulose: molecular interactions between the component polysaccharides.
    Bootten TJ; Harris PJ; Melton LD; Newman RH
    Biomacromolecules; 2009 Nov; 10(11):2961-7. PubMed ID: 19817435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Acetobacter cellulose composites in the hydrated state.
    Astley OM; Chanliaud E; Donald AM; Gidley MJ
    Int J Biol Macromol; 2001 Oct; 29(3):193-202. PubMed ID: 11589972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pectin may hinder the unfolding of xyloglucan chains during cell deformation: implications of the mechanical performance of Arabidopsis hypocotyls with pectin alterations.
    Abasolo W; Eder M; Yamauchi K; Obel N; Reinecke A; Neumetzler L; Dunlop JW; Mouille G; Pauly M; Höfte H; Burgert I
    Mol Plant; 2009 Sep; 2(5):990-9. PubMed ID: 19825674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Lytic Polysaccharide Monooxygenase with Broad Xyloglucan Specificity from the Brown-Rot Fungus Gloeophyllum trabeum and Its Action on Cellulose-Xyloglucan Complexes.
    Kojima Y; Várnai A; Ishida T; Sunagawa N; Petrovic DM; Igarashi K; Jellison J; Goodell B; Alfredsen G; Westereng B; Eijsink VG; Yoshida M
    Appl Environ Microbiol; 2016 Nov; 82(22):6557-6572. PubMed ID: 27590806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.