These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32618975)

  • 21. A binding-induced sutured toehold activation for controllable DNA strand displacement reactions.
    Zhu J; Wang L; Jiang W
    Chem Commun (Camb); 2015 Feb; 51(14):2903-6. PubMed ID: 25583351
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement.
    Weng Z; Yu H; Luo W; Guo Y; Liu Q; Zhang L; Zhang Z; Wang T; Dai L; Zhou X; Han X; Wang L; Li J; Yang Y; Xie G
    ACS Nano; 2022 Feb; 16(2):3135-3144. PubMed ID: 35113525
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rational Design of Allosteric Nanodevices Based on DNA Triple Helix.
    Zhang T; Wei B
    J Am Chem Soc; 2021 Oct; 143(40):16693-16699. PubMed ID: 34606714
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Conformational enhancement of fidelity in toehold-sequestered DNA nanodevices.
    Bader A; Cockroft SL
    Chem Commun (Camb); 2020 May; 56(38):5135-5138. PubMed ID: 32253410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling DNA-Strand Displacement Reactions in the Presence of Base-Pair Mismatches.
    Irmisch P; Ouldridge TE; Seidel R
    J Am Chem Soc; 2020 Jul; 142(26):11451-11463. PubMed ID: 32496760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DNA photonic nanowires with tunable FRET signals on the basis of toehold-mediated DNA strand displacement reactions.
    Wang B; Wang X; Wei B; Huang F; Yao D; Liang H
    Nanoscale; 2017 Mar; 9(9):2981-2985. PubMed ID: 28225119
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A versatile and convenient tool for regulation of DNA strand displacement and post-modification on pre-fabricated DNA nanodevices.
    Liao Y; Hu H; Tang X; Qin Y; Zhang W; Dong K; Yan B; Mu Y; Li L; Ming Z; Xiao X
    Nucleic Acids Res; 2023 Jan; 51(1):29-40. PubMed ID: 36537218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A dandelion-like liposomes-encoded magnetic bead probe-based toehold-mediated DNA circuit for the amplification detection of MiRNA.
    Kong Y; Liu X; Liu C; Xue Q; Li X; Wang H
    Analyst; 2019 Aug; 144(15):4694-4701. PubMed ID: 31268436
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chaperone-Polymer-Assisted, Photodriven DNA Strand Displacement.
    Cheng B; Kashida H; Shimada N; Maruyama A; Asanuma H
    Chembiochem; 2017 Aug; 18(16):1568-1572. PubMed ID: 28586120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strong sequence-dependence in RNA/DNA hybrid strand displacement kinetics.
    Smith FG; Goertz JP; Jurinović K; Stevens MM; Ouldridge TE
    Nanoscale; 2024 Sep; 16(37):17624-17637. PubMed ID: 39235130
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Light-Controlled, Toehold-Mediated Logic Circuit for Assembly of DNA Tiles.
    Xing C; Chen Z; Dai J; Zhou J; Wang L; Zhang KL; Yin X; Lu C; Yang H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6336-6342. PubMed ID: 31918539
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A DNA nanoswitch-controlled reversible nanosensor.
    Peng P; Shi L; Wang H; Li T
    Nucleic Acids Res; 2017 Jan; 45(2):541-546. PubMed ID: 27899631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Toehold-mediated strand displacement reaction-dependent fluorescent strategy for sensitive detection of uracil-DNA glycosylase activity.
    Wu Y; Wang L; Jiang W
    Biosens Bioelectron; 2017 Mar; 89(Pt 2):984-988. PubMed ID: 27825529
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Programmable energy landscapes for kinetic control of DNA strand displacement.
    Machinek RR; Ouldridge TE; Haley NE; Bath J; Turberfield AJ
    Nat Commun; 2014 Nov; 5():5324. PubMed ID: 25382214
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Leveraging Steric Moieties for Kinetic Control of DNA Strand Displacement Reactions.
    Lysne D; Hachigian T; Thachuk C; Lee J; Graugnard E
    J Am Chem Soc; 2023 Aug; 145(30):16691-16703. PubMed ID: 37487322
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNAzyme-Based Dissipative DNA Strand Displacement for Constructing Temporal Logic Gates.
    Hu M; Li X; Wu JN; Yang M; Wu T
    ACS Nano; 2024 Jan; 18(3):2184-2194. PubMed ID: 38193385
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures.
    Petersen P; Tikhomirov G; Qian L
    Nat Commun; 2018 Dec; 9(1):5362. PubMed ID: 30560865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing DNA-based nanodevices activation through cationic peptide acceleration of strand displacement.
    Zhang X; Du R; Xu S; Wang X; Wang ZG
    Nanoscale Horiz; 2024 Aug; 9(9):1582-1586. PubMed ID: 39036841
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A responsive hidden toehold to enable controllable DNA strand displacement reactions.
    Xing Y; Yang Z; Liu D
    Angew Chem Int Ed Engl; 2011 Dec; 50(50):11934-6. PubMed ID: 22012587
    [No Abstract]   [Full Text] [Related]  

  • 40. Enzyme-free fluorescent-amplified aptasensors based on target-responsive DNA strand displacement via toehold-mediated click chemical ligation.
    Oishi M; Nakao S; Kato D
    Chem Commun (Camb); 2014 Jan; 50(8):991-3. PubMed ID: 24306006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.