BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 32619404)

  • 21. Biomolecular Phase Separation: From Molecular Driving Forces to Macroscopic Properties.
    Dignon GL; Best RB; Mittal J
    Annu Rev Phys Chem; 2020 Apr; 71():53-75. PubMed ID: 32312191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Thermodynamic Compensation in Peptides Following Liquid-Liquid Phase Separation.
    Workman RJ; Pettitt BM
    J Phys Chem B; 2021 Jun; 125(24):6431-6439. PubMed ID: 34110175
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spontaneous driving forces give rise to protein-RNA condensates with coexisting phases and complex material properties.
    Boeynaems S; Holehouse AS; Weinhardt V; Kovacs D; Van Lindt J; Larabell C; Van Den Bosch L; Das R; Tompa PS; Pappu RV; Gitler AD
    Proc Natl Acad Sci U S A; 2019 Apr; 116(16):7889-7898. PubMed ID: 30926670
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof.
    Martin EW; Holehouse AS
    Emerg Top Life Sci; 2020 Dec; 4(3):307-329. PubMed ID: 33078839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methods and Strategies to Quantify Phase Separation of Disordered Proteins.
    Ceballos AV; McDonald CJ; Elbaum-Garfinkle S
    Methods Enzymol; 2018; 611():31-50. PubMed ID: 30471691
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Conformational Dynamics of Intrinsically Disordered Proteins Regulate Biomolecular Condensate Chemistry.
    Abyzov A; Blackledge M; Zweckstetter M
    Chem Rev; 2022 Mar; 122(6):6719-6748. PubMed ID: 35179885
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Complete Phase Diagram for Liquid-Liquid Phase Separation of Intrinsically Disordered Proteins.
    McCarty J; Delaney KT; Danielsen SPO; Fredrickson GH; Shea JE
    J Phys Chem Lett; 2019 Apr; 10(8):1644-1652. PubMed ID: 30873835
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deciphering how naturally occurring sequence features impact the phase behaviours of disordered prion-like domains.
    Bremer A; Farag M; Borcherds WM; Peran I; Martin EW; Pappu RV; Mittag T
    Nat Chem; 2022 Feb; 14(2):196-207. PubMed ID: 34931046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. LASSI: A lattice model for simulating phase transitions of multivalent proteins.
    Choi JM; Dar F; Pappu RV
    PLoS Comput Biol; 2019 Oct; 15(10):e1007028. PubMed ID: 31634364
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phase Transitions of Associative Biomacromolecules.
    Pappu RV; Cohen SR; Dar F; Farag M; Kar M
    Chem Rev; 2023 Jul; 123(14):8945-8987. PubMed ID: 36881934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physical Principles Underlying the Complex Biology of Intracellular Phase Transitions.
    Choi JM; Holehouse AS; Pappu RV
    Annu Rev Biophys; 2020 May; 49():107-133. PubMed ID: 32004090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical Techniques for Applications of Analytical Theories to Sequence-Dependent Phase Separations of Intrinsically Disordered Proteins.
    Lin YH; Wessén J; Pal T; Das S; Chan HS
    Methods Mol Biol; 2023; 2563():51-94. PubMed ID: 36227468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design of intrinsically disordered proteins that undergo phase transitions with lower critical solution temperatures.
    Zeng X; Liu C; Fossat MJ; Ren P; Chilkoti A; Pappu RV
    APL Mater; 2021 Feb; 9(2):. PubMed ID: 38362050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expansion of Intrinsically Disordered Proteins Increases the Range of Stability of Liquid-Liquid Phase Separation.
    Garaizar A; Sanchez-Burgos I; Collepardo-Guevara R; Espinosa JR
    Molecules; 2020 Oct; 25(20):. PubMed ID: 33076213
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins.
    Harmon TS; Holehouse AS; Rosen MK; Pappu RV
    Elife; 2017 Nov; 6():. PubMed ID: 29091028
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Protein Condensate Formation via Controlled Multimerization of Intrinsically Disordered Sequences.
    Garabedian MV; Su Z; Dabdoub J; Tong M; Deiters A; Hammer DA; Good MC
    Biochemistry; 2022 Nov; 61(22):2470-2481. PubMed ID: 35918061
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Unraveling Molecular Interactions in Liquid-Liquid Phase Separation of Disordered Proteins by Atomistic Simulations.
    Paloni M; Bailly R; Ciandrini L; Barducci A
    J Phys Chem B; 2020 Oct; 124(41):9009-9016. PubMed ID: 32936641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Crosslink-Induced Conformation Change of Intrinsically Disordered Proteins Have a Nontrivial Effect on Phase Separation Dynamics and Thermodynamics.
    Li L; Hou Z
    J Phys Chem B; 2023 Jun; 127(22):5018-5026. PubMed ID: 37222424
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Walking Along a Protein Phase Diagram to Determine Coexistence Points by Static Light Scattering.
    Peran I; Martin EW; Mittag T
    Methods Mol Biol; 2020; 2141():715-730. PubMed ID: 32696386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate model of liquid-liquid phase behavior of intrinsically disordered proteins from optimization of single-chain properties.
    Tesei G; Schulze TK; Crehuet R; Lindorff-Larsen K
    Proc Natl Acad Sci U S A; 2021 Nov; 118(44):. PubMed ID: 34716273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.