These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 32619806)
1. High yield self-nitrogen-oxygen doped hydrochar derived from microalgae carbonization in bio-oil: Properties and potential applications. Jiang E; Cheng S; Tu R; He Z; Jia Z; Long X; Wu Y; Sun Y; Xu X Bioresour Technol; 2020 Oct; 314():123735. PubMed ID: 32619806 [TBL] [Abstract][Full Text] [Related]
2. Influence of temperature on nitrogen fate during hydrothermal carbonization of food waste. Wang T; Zhai Y; Zhu Y; Peng C; Xu B; Wang T; Li C; Zeng G Bioresour Technol; 2018 Jan; 247():182-189. PubMed ID: 28950125 [TBL] [Abstract][Full Text] [Related]
3. Characterization and utilization of hydrothermal carbonization aqueous phase as nutrient source for microalgal growth. Belete YZ; Leu S; Boussiba S; Zorin B; Posten C; Thomsen L; Wang S; Gross A; Bernstein R Bioresour Technol; 2019 Oct; 290():121758. PubMed ID: 31349114 [TBL] [Abstract][Full Text] [Related]
4. Solid fuel production through hydrothermal carbonization of sewage sludge and microalgae Chlorella sp. from wastewater treatment plant. Lee J; Sohn D; Lee K; Park KY Chemosphere; 2019 Sep; 230():157-163. PubMed ID: 31103861 [TBL] [Abstract][Full Text] [Related]
5. Electrochemical Performance of Nitrogen Self-Doping Carbon Materials Prepared by Pyrolysis and Activation of Defatted Microalgae. Wang X; Zuo L; Wang Y; Zhen M; Xu L; Kong W; Shen B Molecules; 2023 Oct; 28(21):. PubMed ID: 37959701 [TBL] [Abstract][Full Text] [Related]
6. Co-Hydrothermal gasification of Chlorella vulgaris and hydrochar: The effects of waste-to-solid biofuel production and blending concentration on biogas generation. Sztancs G; Juhasz L; Nagy BJ; Nemeth A; Selim A; Andre A; Toth AJ; Mizsey P; Fozer D Bioresour Technol; 2020 Apr; 302():122793. PubMed ID: 32007846 [TBL] [Abstract][Full Text] [Related]
7. Aqueous phase recirculation during hydrothermal carbonization of microalgae and soybean straw: A comparison study. Leng S; Li W; Han C; Chen L; Chen J; Fan L; Lu Q; Li J; Leng L; Zhou W Bioresour Technol; 2020 Feb; 298():122502. PubMed ID: 31830659 [TBL] [Abstract][Full Text] [Related]
8. Hydrochar production from high-ash low-lipid microalgal biomass via hydrothermal carbonization: Effects of operational parameters and products characterization. Khoo CG; Lam MK; Mohamed AR; Lee KT Environ Res; 2020 Sep; 188():109828. PubMed ID: 32798947 [TBL] [Abstract][Full Text] [Related]
9. Involvement of the organics in aqueous phase of bio-oil in hydrothermal carbonization of lignin. Lin H; Li Q; Zhang S; Zhang L; Hu G; Hu X Bioresour Technol; 2022 May; 351():127055. PubMed ID: 35339655 [TBL] [Abstract][Full Text] [Related]
10. A review on nitrogen transformation in hydrochar during hydrothermal carbonization of biomass containing nitrogen. Leng L; Yang L; Leng S; Zhang W; Zhou Y; Peng H; Li H; Hu Y; Jiang S; Li H Sci Total Environ; 2021 Feb; 756():143679. PubMed ID: 33307499 [TBL] [Abstract][Full Text] [Related]
11. Comparison of microalgal hydrochar and pyrochar: production, physicochemical properties, and environmental application. Park C; Kim EJ Environ Sci Pollut Res Int; 2024 Jan; 31(2):2521-2532. PubMed ID: 38066271 [TBL] [Abstract][Full Text] [Related]
12. CO Deepak KR; Mohan S; Dinesha P; Balasubramanian R J Environ Manage; 2023 Sep; 342():118350. PubMed ID: 37302173 [TBL] [Abstract][Full Text] [Related]
13. Co-liquefaction of microalgae and lignocellulosic biomass in subcritical water. Gai C; Li Y; Peng N; Fan A; Liu Z Bioresour Technol; 2015 Jun; 185():240-5. PubMed ID: 25770472 [TBL] [Abstract][Full Text] [Related]
14. Investigation of physico-chemical properties of hydrochar and composition of bio-oil from the hydrothermal treatment of dairy manure: Effect of type and usage volume of extractant. Wu K; Zhang X; Yuan Q; Liu R Waste Manag; 2020 Oct; 116():157-165. PubMed ID: 32799097 [TBL] [Abstract][Full Text] [Related]
15. Microalgae-derived hydrochar application on rice paddy soil: Higher rice yield but increased gaseous nitrogen loss. Chu Q; Xue L; Cheng Y; Liu Y; Feng Y; Yu S; Meng L; Pan G; Hou P; Duan J; Yang L Sci Total Environ; 2020 May; 717():137127. PubMed ID: 32084683 [TBL] [Abstract][Full Text] [Related]
16. Co-hydrothermal carbonization of food waste-woody sawdust blend: Interaction effects on the hydrochar properties and nutrients characteristics. Wang T; Si B; Gong Z; Zhai Y; Cao M; Peng C Bioresour Technol; 2020 Nov; 316():123900. PubMed ID: 32739578 [TBL] [Abstract][Full Text] [Related]
17. Hydrothermal co-carbonization of sewage sludge and pinewood sawdust for nutrient-rich hydrochar production: Synergistic effects and products characterization. Zhang X; Zhang L; Li A J Environ Manage; 2017 Oct; 201():52-62. PubMed ID: 28645066 [TBL] [Abstract][Full Text] [Related]
18. In-situ catalytic pyrolysis upgradation of microalgae into hydrocarbon rich bio-oil: Effects of nitrogen and carbon dioxide environment. Mo L; Dai H; Feng L; Liu B; Li X; Chen Y; Khan S Bioresour Technol; 2020 Oct; 314():123758. PubMed ID: 32629379 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal carbonization of microalgae biomass produced in agro-industrial effluent: Products, characterization and applications. Castro JS; Assemany PP; Carneiro ACO; Ferreira J; de Jesus Júnior MM; Rodrigues FÁ; Calijuri ML Sci Total Environ; 2021 May; 768():144480. PubMed ID: 33453536 [TBL] [Abstract][Full Text] [Related]
20. Co-liquefaction of Chlorella and soybean straw for production of bio-crude: Effects of reusing aqueous phase as the reaction medium. Leng S; Jiao H; Liu T; Pan W; Chen J; Chen J; Huang H; Peng H; Wu Z; Leng L; Zhou W Sci Total Environ; 2022 May; 820():153348. PubMed ID: 35077787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]