These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 32619806)
41. Bamboo derived hydrochar microspheres fabricated by acid-assisted hydrothermal carbonization. Zhang S; Sheng K; Yan W; Liu J; Shuang E; Yang M; Zhang X Chemosphere; 2021 Jan; 263():128093. PubMed ID: 33297089 [TBL] [Abstract][Full Text] [Related]
42. Influence of hydrothermal carbonization conditions on the porosity, functionality, and sorption properties of microalgae hydrochars. Kozyatnyk I; Benavente V; Weidemann E; Gentili FG; Jansson S Sci Rep; 2023 May; 13(1):8562. PubMed ID: 37236976 [TBL] [Abstract][Full Text] [Related]
43. Cultivation, characterization, and properties of Chlorella vulgaris microalgae with different lipid contents and effect on fast pyrolysis oil composition. Adamakis ID; Lazaridis PA; Terzopoulou E; Torofias S; Valari M; Kalaitzi P; Rousonikolos V; Gkoutzikostas D; Zouboulis A; Zalidis G; Triantafyllidis KS Environ Sci Pollut Res Int; 2018 Aug; 25(23):23018-23032. PubMed ID: 29859001 [TBL] [Abstract][Full Text] [Related]
44. Downstream augmentation of hydrothermal carbonization with anaerobic digestion for integrated biogas and hydrochar production from the organic fraction of municipal solid waste: A circular economy concept. Sharma HB; Panigrahi S; Sarmah AK; Dubey BK Sci Total Environ; 2020 Mar; 706():135907. PubMed ID: 31846879 [TBL] [Abstract][Full Text] [Related]
45. Preparation and Electrochemical Performance of Bio-Oil-Derived Hydrochar as a Supercapacitor Electrode Material. Wei J; Sun J; Xu D; Shi L; Wang M; Li B; Song X; Zhang S; Zhang H Int J Environ Res Public Health; 2023 Jan; 20(2):. PubMed ID: 36674109 [TBL] [Abstract][Full Text] [Related]
46. Catalytic hydrothermal upgrading of crude bio-oils produced from different thermo-chemical conversion routes of microalgae. Duan P; Wang B; Xu Y Bioresour Technol; 2015 Jun; 186():58-66. PubMed ID: 25802049 [TBL] [Abstract][Full Text] [Related]
47. Effective CO Liu P; Qin S; Wang J; Zhang S; Tian Y; Zhang F; Liu C; Cao L; Zhou Y; Wang L; Wei Z; Zhang S Environ Pollut; 2023 Sep; 333():121972. PubMed ID: 37295710 [TBL] [Abstract][Full Text] [Related]
48. Nitrogen distribution and evolution during persulfate assisted hydrothermal carbonization of spirulina. Zhang Z; Yang J; Li L; Qian J; Zhao Y; Wang T Bioresour Technol; 2021 Dec; 342():125980. PubMed ID: 34583113 [TBL] [Abstract][Full Text] [Related]
49. Catalytic pyrolysis and liquefaction behavior of microalgae for bio-oil production. Xu Y; Hu Y; Peng Y; Yao L; Dong Y; Yang B; Song R Bioresour Technol; 2020 Mar; 300():122665. PubMed ID: 31918303 [TBL] [Abstract][Full Text] [Related]
50. Investigation of Mannich reaction during co-liquefaction of microalgae and sweet potato waste: Combustion performance of bio-oil and bio-char. Chen X; Peng X; Ma X Bioresour Technol; 2020 Dec; 317():123993. PubMed ID: 32799088 [TBL] [Abstract][Full Text] [Related]
51. Pyrolysis behaviors and thermodynamics properties of hydrochar from bamboo (Phyllostachys heterocycla cv. pubescens) shoot shell. Guo S; Dong X; Zhu C; Han Y; Ma F; Wu T Bioresour Technol; 2017 Jun; 233():92-98. PubMed ID: 28260666 [TBL] [Abstract][Full Text] [Related]
52. Hydrothermal liquefaction of Chlorella pyrenoidosa and effect of emulsification on upgrading the bio-oil. Chen X; Ma X; Chen L; Lu X; Tian Y Bioresour Technol; 2020 Nov; 316():123914. PubMed ID: 32768997 [TBL] [Abstract][Full Text] [Related]
53. Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Du Z; Mohr M; Ma X; Cheng Y; Lin X; Liu Y; Zhou W; Chen P; Ruan R Bioresour Technol; 2012 Sep; 120():13-8. PubMed ID: 22776260 [TBL] [Abstract][Full Text] [Related]
54. Performance intensification of CO Song C; Han X; Yin Q; Chen D; Li H; Li S Sci Total Environ; 2021 Dec; 801():149791. PubMed ID: 34467899 [TBL] [Abstract][Full Text] [Related]
55. The effect of aqueous phase recirculation on hydrothermal liquefaction/carbonization of biomass: A review. Leng S; Leng L; Chen L; Chen J; Chen J; Zhou W Bioresour Technol; 2020 Dec; 318():124081. PubMed ID: 32927317 [TBL] [Abstract][Full Text] [Related]
56. Hydrothermal carbonization of alfalfa: role of processing variables on hydrochar properties. Zhou J; Yu M; Qu J; Akindolie MS; Bi F; Liu Y; Jiang Z; Wang L; Zhang B; Zhang Y Environ Sci Pollut Res Int; 2022 Dec; 29(56):85300-85311. PubMed ID: 35794322 [TBL] [Abstract][Full Text] [Related]
57. Effect of surfactant on hydrothermal carbonization of coconut shell. Tu R; Sun Y; Wu Y; Fan X; Wang J; Shen X; He Z; Jiang E; Xu X Bioresour Technol; 2019 Jul; 284():214-221. PubMed ID: 30939383 [TBL] [Abstract][Full Text] [Related]
58. Comparative production of biochars from corn stalk and cow manure. Liu Z; Zhang Y; Liu Z Bioresour Technol; 2019 Nov; 291():121855. PubMed ID: 31357042 [TBL] [Abstract][Full Text] [Related]
59. Conversion efficiency and oil quality of low-lipid high-protein and high-lipid low-protein microalgae via hydrothermal liquefaction. Li H; Liu Z; Zhang Y; Li B; Lu H; Duan N; Liu M; Zhu Z; Si B Bioresour Technol; 2014 Feb; 154():322-9. PubMed ID: 24413449 [TBL] [Abstract][Full Text] [Related]
60. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Miao X; Wu Q J Biotechnol; 2004 May; 110(1):85-93. PubMed ID: 15099908 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]