These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 32619871)
1. Ultrasound vibro-elastography for assessing mechanical properties of porcine reproductive tissues in an ex vivo model. Zhou B; Shao J; Kisby CK; Zhang X Clin Biomech (Bristol); 2020 Aug; 78():105093. PubMed ID: 32619871 [TBL] [Abstract][Full Text] [Related]
2. Transvaginal Ultrasound Vibro-elastography for Measuring Uterine Viscoelasticity: A Phantom Study. Zhang X; Zhou B; VanBuren WM; Burnett TL; Knudsen JM Ultrasound Med Biol; 2019 Feb; 45(2):617-622. PubMed ID: 30467032 [TBL] [Abstract][Full Text] [Related]
3. Two dimensional penile ultrasound vibro-elastography for measuring penile tissue viscoelasticity: A pilot patient study and its correlation with penile ultrasonography. Zhang X; Zhou B; Kopecky SL; Trost LW J Mech Behav Biomed Mater; 2020 Mar; 103():103570. PubMed ID: 32090962 [TBL] [Abstract][Full Text] [Related]
4. An Ultrasound Vibro-Elastography Technique for Assessing Papilledema. Zhou B; Chen JJ; Kazemi A; Sit AJ; Zhang X Ultrasound Med Biol; 2019 Aug; 45(8):2034-2039. PubMed ID: 31122813 [TBL] [Abstract][Full Text] [Related]
5. A noninvasive ultrasound elastography technique for measuring surface waves on the lung. Zhang X; Osborn T; Kalra S Ultrasonics; 2016 Sep; 71():183-188. PubMed ID: 27392204 [TBL] [Abstract][Full Text] [Related]
6. Noninvasive measurement of wave speed of porcine cornea in ex vivo porcine eyes for various intraocular pressures. Zhou B; Sit AJ; Zhang X Ultrasonics; 2017 Nov; 81():86-92. PubMed ID: 28618301 [TBL] [Abstract][Full Text] [Related]
7. Comparison of five viscoelastic models for estimating viscoelastic parameters using ultrasound shear wave elastography. Zhou B; Zhang X J Mech Behav Biomed Mater; 2018 Sep; 85():109-116. PubMed ID: 29879581 [TBL] [Abstract][Full Text] [Related]
8. A feasibility study for noninvasive measurement of shear wave speed in live zebrafish. Zhang X; Zhang AX; Zhou B; Xu X Ultrasonics; 2020 Sep; 107():106170. PubMed ID: 32417695 [TBL] [Abstract][Full Text] [Related]
9. Mechanical properties of porcine brain tissue in vivo and ex vivo estimated by MR elastography. Guertler CA; Okamoto RJ; Schmidt JL; Badachhape AA; Johnson CL; Bayly PV J Biomech; 2018 Mar; 69():10-18. PubMed ID: 29395225 [TBL] [Abstract][Full Text] [Related]
10. Ex Vivo Evaluation of Mechanical Anisotropic Tissues with High-Frequency Ultrasound Shear Wave Elastography. Lee S; Eun LY; Hwang JY; Eun Y Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161728 [TBL] [Abstract][Full Text] [Related]
11. Quantitative analysis of liver fibrosis in rats with shearwave dispersion ultrasound vibrometry: comparison with dynamic mechanical analysis. Zhu Y; Zhang X; Zheng Y; Chen X; Shen Y; Lin H; Guo Y; Wang T; Chen S Med Eng Phys; 2014 Nov; 36(11):1401-7. PubMed ID: 24835187 [TBL] [Abstract][Full Text] [Related]
12. Identification of the Rayleigh surface waves for estimation of viscoelasticity using the surface wave elastography technique. Zhang X J Acoust Soc Am; 2016 Nov; 140(5):3619. PubMed ID: 27908086 [TBL] [Abstract][Full Text] [Related]
13. In vivo assessment of the mechanical properties of crystalline lenses in a rabbit model using ultrasound elastography: Effects of ultrasound frequency and age. Wang Q; Zhu Y; Shao M; Lin H; Chen S; Chen X; Alizad A; Fatemi M; Zhang X Exp Eye Res; 2019 Jul; 184():258-265. PubMed ID: 31077713 [TBL] [Abstract][Full Text] [Related]
14. Measurement of shear wave speed dispersion in the placenta by transient elastography: A preliminary ex vivo study. Simon EG; Callé S; Perrotin F; Remenieras JP PLoS One; 2018; 13(4):e0194309. PubMed ID: 29621270 [TBL] [Abstract][Full Text] [Related]
15. Investigation of the effects of myocardial anisotropy for shear wave elastography using impulsive force and harmonic vibration. Urban MW; Qiang B; Song P; Nenadic IZ; Chen S; Greenleaf JF Phys Med Biol; 2016 Jan; 61(1):365-82. PubMed ID: 26674613 [TBL] [Abstract][Full Text] [Related]
16. Spectral Quantification of Nonlinear Elasticity Using Acoustoelasticity and Shear-Wave Dispersion. Otesteanu CF; Chintada BR; Rominger MB; Sanabria SJ; Goksel O IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Dec; 66(12):1845-1855. PubMed ID: 31398118 [TBL] [Abstract][Full Text] [Related]
17. SWAVE Imaging of Placental Elasticity and Viscosity: Proof of Concept. Abeysekera JM; Ma M; Pesteie M; Terry J; Pugash D; Hutcheon JA; Mayer C; Lampe L; Salcudean S; Rohling R Ultrasound Med Biol; 2017 Jun; 43(6):1112-1124. PubMed ID: 28392000 [TBL] [Abstract][Full Text] [Related]
18. Modeling Ultrasound Propagation in the Moving Brain: Applications to Shear Shock Waves and Traumatic Brain Injury. Chandrasekaran S; Tripathi BB; Espindola D; Pinton GF IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jan; 68(1):201-212. PubMed ID: 32894713 [TBL] [Abstract][Full Text] [Related]
19. Effects of storage temperature on the mechanical properties of porcine kidney estimated using shear wave elastography. Ternifi R; Gennisson JL; Tanter M; Beillas P J Mech Behav Biomed Mater; 2013 Dec; 28():86-93. PubMed ID: 23973616 [TBL] [Abstract][Full Text] [Related]
20. Ultrasound-tensiometry: A new method for measuring differential loading within a tendon during movement. Welte L; Blank JL; Cone SG; Thelen DG Gait Posture; 2024 Sep; 113():352-358. PubMed ID: 39047411 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]