BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 32619939)

  • 41. High-Throughput Monitoring of Multiclass Syrup Adulterants in Honey Based on the Oligosaccharide and Polysaccharide Profiles by MALDI Mass Spectrometry.
    Qu L; Jiang Y; Huang X; Cui M; Ning F; Liu T; Gao Y; Wu D; Nie Z; Luo L
    J Agric Food Chem; 2019 Oct; 67(40):11256-11261. PubMed ID: 31545583
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Detection of fraud in high-quality rice by near-infrared spectroscopy.
    Liu Y; Li Y; Peng Y; Yang Y; Wang Q
    J Food Sci; 2020 Sep; 85(9):2773-2782. PubMed ID: 32713030
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of the botanical origin of honey by front-face synchronous fluorescence spectroscopy.
    Lenhardt L; Zeković I; Dramićanin T; Dramićanin MD; Bro R
    Appl Spectrosc; 2014; 68(5):557-63. PubMed ID: 25014599
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Detection and quantification of adulterants in honey by LIBS.
    Nespeca MG; Vieira AL; Júnior DS; Neto JAG; Ferreira EC
    Food Chem; 2020 May; 311():125886. PubMed ID: 31771912
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Polysaccharides as a marker for detection of corn sugar syrup addition in honey.
    Megherbi M; Herbreteau B; Faure R; Salvador A
    J Agric Food Chem; 2009 Mar; 57(6):2105-11. PubMed ID: 19243098
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Detection of acacia honey adulteration with high fructose corn syrup through determination of targeted α‑Dicarbonyl compound using ion mobility-mass spectrometry coupled with UHPLC-MS/MS.
    Yan S; Song M; Wang K; Fang X; Peng W; Wu L; Xue X
    Food Chem; 2021 Aug; 352():129312. PubMed ID: 33652193
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Qualitative-Quantitative Analysis of Rice Bran Oil Adulteration Based on Laser Near Infrared Spectroscopy].
    Tu B; Song ZQ; Zheng X; Zeng LL; Yin C; He DP; Qi PS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jun; 35(6):1539-45. PubMed ID: 26601363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nondestructive Determination of Diastase Activity of Honey Based on Visible and Near-Infrared Spectroscopy.
    Huang Z; Liu L; Li G; Li H; Ye D; Li X
    Molecules; 2019 Mar; 24(7):. PubMed ID: 30934979
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new methodology based on GC-MS to detect honey adulteration with commercial syrups.
    Ruiz-Matute AI; Soria AC; Martínez-Castro I; Sanz ML
    J Agric Food Chem; 2007 Sep; 55(18):7264-9. PubMed ID: 17676863
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Optical spectroscopy methods combined with multivariate statistical analysis for the classification of Cretan thyme, multi-floral and honeydew honey.
    Orfanakis E; Markoulidakis M; Philippidis A; Zoumi A; Velegrakis M
    J Sci Food Agric; 2021 Oct; 101(13):5337-5347. PubMed ID: 33650153
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Identification of Rice Varieties and Transgenic Characteristics Based on Near-Infrared Diffuse Reflectance Spectroscopy and Chemometrics.
    Hao Y; Geng P; Wu W; Wen Q; Rao M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31847134
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Rheological behavior of honey adulterated with agave, maple, corn, rice and inverted sugar syrups.
    Ciursa P; Oroian M
    Sci Rep; 2021 Dec; 11(1):23408. PubMed ID: 34862474
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Determination of honey adulterated with corn syrup by quantitative amplification of maize residual DNA using ultra-rapid real-time PCR.
    Truong AT; Kim S; Yoon B
    J Sci Food Agric; 2022 Jan; 102(2):774-781. PubMed ID: 34216492
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Detection of adulterations in a valuable Brazilian honey by using spectrofluorimetry and multiway classification.
    Antônio DC; de Assis DCS; Botelho BG; Sena MM
    Food Chem; 2022 Feb; 370():131064. PubMed ID: 34537433
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Honey adulteration detection: voltammetric e-tongue versus official methods for physicochemical parameter determination.
    Oroian M; Paduret S; Ropciuc S
    J Sci Food Agric; 2018 Aug; 98(11):4304-4311. PubMed ID: 29427329
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Use of Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) Spectroscopy in Combination with Multivariate Methods for the Rapid Determination of the Adulteration of Grape, Carob and Mulberry Pekmez.
    Yaman N; Durakli Velioglu S
    Foods; 2019 Jun; 8(7):. PubMed ID: 31261701
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Differentiation of Anatolian honey samples from different botanical origins by ATR-FTIR spectroscopy using multivariate analysis.
    Gok S; Severcan M; Goormaghtigh E; Kandemir I; Severcan F
    Food Chem; 2015 Mar; 170():234-40. PubMed ID: 25306340
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Development of a method based on ATR-FTIR spectroscopy to detect maple syrup adulterated with added syrups.
    Bilamjian S; Bahadi M; Ismail A; Tremblay C; Bayen S
    J Sci Food Agric; 2024 Feb; 104(3):1768-1776. PubMed ID: 37872647
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Direct Comparison of Cavity Ring Down Spectrometry and Isotope Ratio Mass Spectrometry for Detection of Sugar Adulteration in Honey Samples.
    Mantha M; Urban JR; Mark WA; Chernyshev A; Kubachka KM
    J AOAC Int; 2018 Nov; 101(6):1857-1863. PubMed ID: 29618406
    [TBL] [Abstract][Full Text] [Related]  

  • 60. [Progress in quality analysis of honey by infrared spectroscopy].
    Tu ZH; Zhu DZ; Ji BP; Meng CY; Wang LG; Qing ZS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Nov; 30(11):2971-5. PubMed ID: 21284165
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.