BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32620000)

  • 1. Realization of a push-me-pull-you swimmer at low Reynolds numbers.
    Silverberg O; Demir E; Mishler G; Hosoume B; Trivedi N; Tisch C; Plascencia D; Pak OS; Araci IE
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32620000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reciprocal locomotion of dense swimmers in Stokes flow.
    Gonzalez-Rodriguez D; Lauga E
    J Phys Condens Matter; 2009 May; 21(20):204103. PubMed ID: 21825512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EuMoBot: replicating euglenoid movement in a soft robot.
    Digumarti KM; Conn AT; Rossiter J
    J R Soc Interface; 2018 Nov; 15(148):. PubMed ID: 30464056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination.
    Liu Y; Zou Z; Pak OS; Tsang ACH
    Sci Rep; 2023 Jun; 13(1):9397. PubMed ID: 37296306
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A minimal robophysical model of quadriflagellate self-propulsion.
    Diaz K; Robinson TL; Aydin YO; Aydin E; Goldman DI; Wan KY
    Bioinspir Biomim; 2021 Sep; 16(6):. PubMed ID: 34359055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of shape and stroke parameters on the propulsion performance of an axisymmetric swimmer.
    Peng J; Alben S
    Bioinspir Biomim; 2012 Mar; 7(1):016012. PubMed ID: 22345408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Propulsion of an elastic filament in a shear-thinning fluid.
    Qin K; Peng Z; Chen Y; Nganguia H; Zhu L; Pak OS
    Soft Matter; 2021 Apr; 17(14):3829-3839. PubMed ID: 33885447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase-separation models for swimming enhancement in complex fluids.
    Man Y; Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023004. PubMed ID: 26382500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Reynolds-number swimmer utilizing surface traveling waves: analytical and experimental study.
    Setter E; Bucher I; Haber S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 2):066304. PubMed ID: 23005203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force and torque-free helical tail robot to study low Reynolds number micro-organism swimming.
    Das A; Styslinger M; Harris DM; Zenit R
    Rev Sci Instrum; 2022 Apr; 93(4):044103. PubMed ID: 35489898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-dimensional point singularity model of a low-Reynolds-number swimmer near a wall.
    Crowdy DG; Or Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036313. PubMed ID: 20365860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal swimming at low Reynolds numbers.
    Avron JE; Gat O; Kenneth O
    Phys Rev Lett; 2004 Oct; 93(18):186001. PubMed ID: 15525183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effective shear viscosity and dynamics of suspensions of micro-swimmers from small to moderate concentrations.
    Gyrya V; Lipnikov K; Aranson IS; Berlyand L
    J Math Biol; 2011 May; 62(5):707-40. PubMed ID: 20563812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reynolds number limits for jet propulsion: a numerical study of simplified jellyfish.
    Herschlag G; Miller L
    J Theor Biol; 2011 Sep; 285(1):84-95. PubMed ID: 21669208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconfigurable paramagnetic microswimmers: Brownian motion affects non-reciprocal actuation.
    Du D; Hilou E; Biswal SL
    Soft Matter; 2018 May; 14(18):3463-3470. PubMed ID: 29542796
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.
    Lapa MF; Hughes TL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Apr; 89(4):043019. PubMed ID: 24827344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Collision of microswimmers in a viscous fluid.
    Potomkin M; Gyrya V; Aranson I; Berlyand L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053005. PubMed ID: 23767618
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Numerical investigation of the hydrodynamics of anguilliform swimming in the transitional and inertial flow regimes.
    Borazjani I; Sotiropoulos F
    J Exp Biol; 2009 Feb; 212(Pt 4):576-92. PubMed ID: 19181905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of a model microswimmer with applications to blebbing cells and mini-robots.
    Wang Q; Othmer HG
    J Math Biol; 2018 Jun; 76(7):1699-1763. PubMed ID: 29497820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.