BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 32620368)

  • 1. Nitrite removal with potential value-added ingredients accumulation via Chlorella sp. L38.
    Li S; Zheng X; Chen Y; Song C; Lei Z; Zhang Z
    Bioresour Technol; 2020 Oct; 313():123743. PubMed ID: 32620368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous nutrient removal and biomass/lipid production by Chlorella sp. in seafood processing wastewater.
    Gao F; Peng YY; Li C; Yang GJ; Deng YB; Xue B; Guo YM
    Sci Total Environ; 2018 Nov; 640-641():943-953. PubMed ID: 30021327
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nutrient removal from pickle industry wastewater by cultivation of Chlorella pyrenoidosa for lipid production.
    Wan L; Wu Y; Zhang X; Zhang W
    Water Sci Technol; 2019 Jun; 79(11):2166-2174. PubMed ID: 31318354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradability and mechanism of florfenicol via Chlorella sp. UTEX1602 and L38: Experimental study.
    Song C; Wei Y; Qiu Y; Qi Y; Li Y; Kitamura Y
    Bioresour Technol; 2019 Jan; 272():529-534. PubMed ID: 30391846
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioremediation of Pyropia-processing wastewater coupled with lipid production using Chlorella sp.
    Zheng S; Chen S; Zou S; Yan Y; Gao G; He M; Wang C; Chen H; Wang Q
    Bioresour Technol; 2021 Feb; 321():124428. PubMed ID: 33272824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic Mechanism of Sulfadimethoxine Biodegradation by
    Li B; Wu D; Li Y; Shi Y; Wang C; Sun J; Song C
    Front Microbiol; 2022; 13():840562. PubMed ID: 35369425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of total nitrogen from wastewater by a combination of Chlorella sp. and audible sound.
    Pham TL; Tran UP; Bui NH; Bach TTN; Tran BV; Bui XT; Phan TM; Bui HM
    Water Sci Technol; 2021 Nov; 84(10-11):3132-3142. PubMed ID: 34850717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capabilities and mechanisms of microalgae on nutrients and florfenicol removing from marine aquaculture wastewater.
    Qian Z; Na L; Bao-Long W; Tao Z; Peng-Fei M; Wei-Xiao Z; Sraboni NZ; Zheng M; Ying-Qi Z; Liu Y
    J Environ Manage; 2022 Oct; 320():115673. PubMed ID: 35940008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effects of Physicochemical Factors and Cell Density on Nitrite Transformation in a Lipid-Rich Chlorella.
    Liang F; Du K; Wen X; Luo L; Geng Y; Li Y
    J Microbiol Biotechnol; 2015 Dec; 25(12):2116-24. PubMed ID: 26323272
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivating Chlorella sorokiniana AK-1 with swine wastewater for simultaneous wastewater treatment and algal biomass production.
    Chen CY; Kuo EW; Nagarajan D; Ho SH; Dong CD; Lee DJ; Chang JS
    Bioresour Technol; 2020 Apr; 302():122814. PubMed ID: 32004812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of organic carbon to nitrogen ratio in wastewater on growth, nutrient uptake and lipid accumulation of a mixotrophic microalgae Chlorella sp.
    Gao F; Yang HL; Li C; Peng YY; Lu MM; Jin WH; Bao JJ; Guo YM
    Bioresour Technol; 2019 Jun; 282():118-124. PubMed ID: 30852331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microalgae as promising source for integrated wastewater treatment and biodiesel production.
    Fal S; Benhima R; El Mernissi N; Kasmi Y; Smouni A; El Arroussi H
    Int J Phytoremediation; 2022; 24(1):34-46. PubMed ID: 34000939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anaerobic Digestion Effluents (ADEs) Treatment Coupling with
    Zieliński M; Dębowski M; Szwaja S; Kisielewska M
    Water Environ Res; 2018 Feb; 90(2):155-163. PubMed ID: 28766484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production.
    Kuo CM; Chen TY; Lin TH; Kao CY; Lai JT; Chang JS; Lin CS
    Bioresour Technol; 2015 Oct; 194():326-33. PubMed ID: 26210147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phycoremediation and valorization of synthetic dairy wastewater using microalgal consortia of
    Gatamaneni Loganathan B; Orsat V; Lefsrud M
    Environ Technol; 2021 Aug; 42(20):3231-3244. PubMed ID: 32009561
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a freshwater microalgae and its application for the treatment of wastewater and obtaining fatty acids from tilapia cultivation.
    Morando-Grijalva CA; Vázquez-Larios AL; Alcántara-Hernández RJ; Ortega-Clemente LA; Robledo-Narváez PN
    Environ Sci Pollut Res Int; 2020 Aug; 27(23):28575-28584. PubMed ID: 32212076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioethanol production from Chlorella vulgaris ESP-31 grown in unsterilized swine wastewater.
    Acebu PIG; de Luna MDG; Chen CY; Abarca RRM; Chen JH; Chang JS
    Bioresour Technol; 2022 May; 352():127086. PubMed ID: 35364235
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal.
    Ren H; Tuo J; Addy MM; Zhang R; Lu Q; Anderson E; Chen P; Ruan R
    Bioresour Technol; 2017 Dec; 245(Pt A):1130-1138. PubMed ID: 28962086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae-based swine wastewater treatment: Strain screening, conditions optimization, physiological activity and biomass potential.
    Liu XY; Hong Y; Zhao GP; Zhang HK; Zhai QY; Wang Q
    Sci Total Environ; 2022 Feb; 807(Pt 3):151008. PubMed ID: 34662604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of simultaneous biomass production and nutrient removal by mixotrophic Chlorella sp. using response surface methodology.
    Lee YR; Chen JJ
    Water Sci Technol; 2016; 73(7):1520-31. PubMed ID: 27054723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.