These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 32620769)
1. Stable machine-learning parameterization of subgrid processes for climate modeling at a range of resolutions. Yuval J; O'Gorman PA Nat Commun; 2020 Jul; 11(1):3295. PubMed ID: 32620769 [TBL] [Abstract][Full Text] [Related]
2. Deep learning to represent subgrid processes in climate models. Rasp S; Pritchard MS; Gentine P Proc Natl Acad Sci U S A; 2018 Sep; 115(39):9684-9689. PubMed ID: 30190437 [TBL] [Abstract][Full Text] [Related]
3. Memory-based parameterization with differentiable solver: Application to Lorenz '96. Bhouri MA; Gentine P Chaos; 2023 Jul; 33(7):. PubMed ID: 37408156 [TBL] [Abstract][Full Text] [Related]
4. Deep Learning Based Cloud Cover Parameterization for ICON. Grundner A; Beucler T; Gentine P; Iglesias-Suarez F; Giorgetta MA; Eyring V J Adv Model Earth Syst; 2022 Dec; 14(12):e2021MS002959. PubMed ID: 37035630 [TBL] [Abstract][Full Text] [Related]
5. Implicit learning of convective organization explains precipitation stochasticity. Shamekh S; Lamb KD; Huang Y; Gentine P Proc Natl Acad Sci U S A; 2023 May; 120(20):e2216158120. PubMed ID: 37155849 [TBL] [Abstract][Full Text] [Related]
6. Simulating Lagrangian Subgrid-Scale Dispersion on Neutral Surfaces in the Ocean. Reijnders D; Deleersnijder E; van Sebille E J Adv Model Earth Syst; 2022 Feb; 14(2):e2021MS002850. PubMed ID: 35860619 [TBL] [Abstract][Full Text] [Related]
7. An Extended Eddy-Diffusivity Mass-Flux Scheme for Unified Representation of Subgrid-Scale Turbulence and Convection. Tan Z; Kaul CM; Pressel KG; Cohen Y; Schneider T; Teixeira J J Adv Model Earth Syst; 2018 Mar; 10(3):770-800. PubMed ID: 29780442 [TBL] [Abstract][Full Text] [Related]
8. A review on regional convection-permitting climate modeling: Demonstrations, prospects, and challenges. Prein AF; Langhans W; Fosser G; Ferrone A; Ban N; Goergen K; Keller M; Tölle M; Gutjahr O; Feser F; Brisson E; Kollet S; Schmidli J; van Lipzig NP; Leung R Rev Geophys; 2015 Jun; 53(2):323-361. PubMed ID: 27478878 [TBL] [Abstract][Full Text] [Related]
9. Non-Linear Dimensionality Reduction With a Variational Encoder Decoder to Understand Convective Processes in Climate Models. Behrens G; Beucler T; Gentine P; Iglesias-Suarez F; Pritchard M; Eyring V J Adv Model Earth Syst; 2022 Aug; 14(8):e2022MS003130. PubMed ID: 36245669 [TBL] [Abstract][Full Text] [Related]
10. Physics-informed deep-learning parameterization of ocean vertical mixing improves climate simulations. Zhu Y; Zhang RH; Moum JN; Wang F; Li X; Li D Natl Sci Rev; 2022 Aug; 9(8):nwac044. PubMed ID: 35992235 [TBL] [Abstract][Full Text] [Related]
11. Response of extreme precipitation to uniform surface warming in quasi-global aquaplanet simulations at high resolution. O'Gorman PA; Li Z; Boos WR; Yuval J Philos Trans A Math Phys Eng Sci; 2021 Apr; 379(2195):20190543. PubMed ID: 33641467 [TBL] [Abstract][Full Text] [Related]
12. Assessing the Grell-Freitas Convection Parameterization in the NASA GEOS Modeling System. Freitas SR; Grell GA; Molod A; Thompson MA; Putman WM; Santos E Silva CM; Souza EP J Adv Model Earth Syst; 2018 Jun; 10(6):1266-1289. PubMed ID: 30167073 [TBL] [Abstract][Full Text] [Related]
13. Machine learning and the quest for objectivity in climate model parameterization. Jebeile J; Lam V; Majszak M; Räz T Clim Change; 2023; 176(8):101. PubMed ID: 37476487 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of Parameterized Convective Transport of Trace Gases in Simulation of Storms Observed During the DC3 Field Campaign. Li Y; Pickering KE; Barth MC; Bela MM; Cummings KA; Allen DJ J Geophys Res Atmos; 2018 Sep; 123(19):11238-11261. PubMed ID: 32023330 [TBL] [Abstract][Full Text] [Related]
15. Lagrangian Particle Dispersion Models in the Grey Zone of Turbulence: Adaptations to FLEXPART-COSMO for Simulations at 1 km Grid Resolution. Katharopoulos I; Brunner D; Emmenegger L; Leuenberger M; Henne S Boundary Layer Meteorol; 2022; 185(1):129-160. PubMed ID: 36101710 [TBL] [Abstract][Full Text] [Related]
16. Insights into low-latitude cloud feedbacks from high-resolution models. Bretherton CS Philos Trans A Math Phys Eng Sci; 2015 Nov; 373(2054):. PubMed ID: 26438280 [TBL] [Abstract][Full Text] [Related]
17. Sensitivities of Summertime Mesoscale Circulations in the Coastal Carolinas to Modifications of the Kain-Fritsch Cumulus Parameterization. Sims AP; Alapaty K; Raman S Mon Weather Rev; 2017; 145(11):4381-4399. PubMed ID: 29681661 [TBL] [Abstract][Full Text] [Related]
18. Large eddy simulation of the atmosphere on various scales. Cullen MJ; Brown AR Philos Trans A Math Phys Eng Sci; 2009 Jul; 367(1899):2947-56. PubMed ID: 19531514 [TBL] [Abstract][Full Text] [Related]
19. Improving the simulation of convective dust storms in regional-to-global models. Foroutan H; Pleim JE J Adv Model Earth Syst; 2017 Sep; 9(5):2046-2060. PubMed ID: 29963221 [TBL] [Abstract][Full Text] [Related]
20. Trends and uncertainties in budburst projections of Norway spruce in Northern Europe. Olsson C; Olin S; Lindström J; Jönsson AM Ecol Evol; 2017 Dec; 7(23):9954-9969. PubMed ID: 29238528 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]