BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32620830)

  • 1. Low thermal conductivity of iron-silicon alloys at Earth's core conditions with implications for the geodynamo.
    Hsieh WP; Goncharov AF; Labrosse S; Holtgrewe N; Lobanov SS; Chuvashova I; Deschamps F; Lin JF
    Nat Commun; 2020 Jul; 11(1):3332. PubMed ID: 32620830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermal conductivity of Fe-Si alloys and thermal stratification in Earth's core.
    Zhang Y; Luo K; Hou M; Driscoll P; Salke NP; Minár J; Prakapenka VB; Greenberg E; Hemley RJ; Cohen RE; Lin JF
    Proc Natl Acad Sci U S A; 2022 Jan; 119(1):. PubMed ID: 34969863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core.
    de Koker N; Steinle-Neumann G; Vlcek V
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4070-3. PubMed ID: 22375035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core.
    Manthilake GM; de Koker N; Frost DJ; McCammon CA
    Proc Natl Acad Sci U S A; 2011 Nov; 108(44):17901-4. PubMed ID: 22021444
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct measurement of thermal conductivity in solid iron at planetary core conditions.
    Konôpková Z; McWilliams RS; Gómez-Pérez N; Goncharov AF
    Nature; 2016 Jun; 534(7605):99-101. PubMed ID: 27251283
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal and electrical conductivity of iron at Earth's core conditions.
    Pozzo M; Davies C; Gubbins D; Alfè D
    Nature; 2012 Apr; 485(7398):355-8. PubMed ID: 22495307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Powering Earth's dynamo with magnesium precipitation from the core.
    O'Rourke JG; Stevenson DJ
    Nature; 2016 Jan; 529(7586):387-9. PubMed ID: 26791727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal Conductivity and Electrical Resistivity of Solid Iron at Earth's Core Conditions from First Principles.
    Xu J; Zhang P; Haule K; Minar J; Wimmer S; Ebert H; Cohen RE
    Phys Rev Lett; 2018 Aug; 121(9):096601. PubMed ID: 30230853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary.
    Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S
    Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions.
    Sakamaki T; Ohtani E; Fukui H; Kamada S; Takahashi S; Sakairi T; Takahata A; Sakai T; Tsutsui S; Ishikawa D; Shiraishi R; Seto Y; Tsuchiya T; Baron AQ
    Sci Adv; 2016 Feb; 2(2):e1500802. PubMed ID: 26933678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle.
    Dubrovinsky L; Dubrovinskaia N; Langenhorst F; Dobson D; Rubie D; Gessmann C; Abrikosov IA; Johansson B; Baykov VI; Vitos L; Le Bihan T; Crichton WA; Dmitriev V; Weber HP
    Nature; 2003 Mar; 422(6927):58-61. PubMed ID: 12621431
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resistivity of solid and liquid Fe-Ni-Si with applications to the cores of Earth, Mercury and Venus.
    Berrada M; Secco RA; Yong W
    Sci Rep; 2022 Jun; 12(1):9941. PubMed ID: 35705611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallization of silicon dioxide and compositional evolution of the Earth's core.
    Hirose K; Morard G; Sinmyo R; Umemoto K; Hernlund J; Helffrich G; Labrosse S
    Nature; 2017 Mar; 543(7643):99-102. PubMed ID: 28225759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The ab initio simulation of the Earth's core.
    Alfè D; Gillan MJ; Vocadlo L; Brodholt J; Price GD
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1227-44. PubMed ID: 12804276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiative conductivity in the Earth's lower mantle.
    Goncharov AF; Haugen BD; Struzhkin VV; Beck P; Jacobsen SD
    Nature; 2008 Nov; 456(7219):231-4. PubMed ID: 19005553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of iron on the lattice thermal conductivity of Earth's deep mantle and implications for mantle dynamics.
    Hsieh WP; Deschamps F; Okuchi T; Lin JF
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4099-4104. PubMed ID: 29610319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Iron-silicon alloy in Earth's core?
    Lin JF; Heinz DL; Campbell AJ; Devine JM; Shen G
    Science; 2002 Jan; 295(5553):313-5. PubMed ID: 11786640
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental determination of the electrical resistivity of iron at Earth's core conditions.
    Ohta K; Kuwayama Y; Hirose K; Shimizu K; Ohishi Y
    Nature; 2016 Jun; 534(7605):95-8. PubMed ID: 27251282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for an oxygen-depleted liquid outer core of the Earth.
    Huang H; Fei Y; Cai L; Jing F; Hu X; Xie H; Zhang L; Gong Z
    Nature; 2011 Nov; 479(7374):513-6. PubMed ID: 22113693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos.
    Christensen UR; Tilgner A
    Nature; 2004 May; 429(6988):169-71. PubMed ID: 15141208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.