These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 32620830)

  • 21. Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos.
    Christensen UR; Tilgner A
    Nature; 2004 May; 429(6988):169-71. PubMed ID: 15141208
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Melting phase relations in Fe-Si-H at high pressure and implications for Earth's inner core crystallization.
    Hikosaka K; Tagawa S; Hirose K; Okuda Y; Oka K; Umemoto K; Ohishi Y
    Sci Rep; 2022 Jun; 12(1):10000. PubMed ID: 35705617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reconciliation of Experiments and Theory on Transport Properties of Iron and the Geodynamo.
    Zhang Y; Hou M; Liu G; Zhang C; Prakapenka VB; Greenberg E; Fei Y; Cohen RE; Lin JF
    Phys Rev Lett; 2020 Aug; 125(7):078501. PubMed ID: 32857557
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An early geodynamo driven by exsolution of mantle components from Earth's core.
    Badro J; Siebert J; Nimmo F
    Nature; 2016 Aug; 536(7616):326-8. PubMed ID: 27437583
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-pressure radiative conductivity of dense silicate glasses with potential implications for dark magmas.
    Murakami M; Goncharov AF; Hirao N; Masuda R; Mitsui T; Thomas SM; Bina CR
    Nat Commun; 2014 Nov; 5():5428. PubMed ID: 25384573
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence for Fe-Si-O liquid immiscibility at deep Earth pressures.
    Arveson SM; Deng J; Karki BB; Lee KKM
    Proc Natl Acad Sci U S A; 2019 May; 116(21):10238-10243. PubMed ID: 31068466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Constraints on the composition of the Earth's core from ab initio calculations.
    Alfe D; Gillan MJ; Price GD
    Nature; 2000 May; 405(6783):172-5. PubMed ID: 10821270
    [TBL] [Abstract][Full Text] [Related]  

  • 28.
    Dekura H; Tsuchiya T
    J Phys Condens Matter; 2023 May; 35(30):. PubMed ID: 37071998
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A seismologically consistent compositional model of Earth's core.
    Badro J; Côté AS; Brodholt JP
    Proc Natl Acad Sci U S A; 2014 May; 111(21):7542-5. PubMed ID: 24821817
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The thermal conductivity of the Earth's core and implications for its thermal and compositional evolution.
    Ohta K; Hirose K
    Natl Sci Rev; 2021 Apr; 8(4):nwaa303. PubMed ID: 34691620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lattice thermal conductivity of MgO at conditions of Earth's interior.
    Tang X; Dong J
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4539-43. PubMed ID: 20176973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Earth's Core-Mantle Boundary: Results of Experiments at High Pressures and Temperatures.
    Knittle E; Jeanloz R
    Science; 1991 Mar; 251(5000):1438-43. PubMed ID: 17779437
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phase transition of FeO and stratification in Earth's outer core.
    Ozawa H; Takahashi F; Hirose K; Ohishi Y; Hirao N
    Science; 2011 Nov; 334(6057):792-4. PubMed ID: 22076374
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A crystallizing dense magma ocean at the base of the Earth's mantle.
    Labrosse S; Hernlund JW; Coltice N
    Nature; 2007 Dec; 450(7171):866-9. PubMed ID: 18064010
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strong, Multi-Scale Heterogeneity in Earth's Lowermost Mantle.
    Tkalčić H; Young M; Muir JB; Davies DR; Mattesini M
    Sci Rep; 2015 Dec; 5():18416. PubMed ID: 26674394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Melting and defect transitions in FeO up to pressures of Earth's core-mantle boundary.
    Dobrosavljevic VV; Zhang D; Sturhahn W; Chariton S; Prakapenka VB; Zhao J; Toellner TS; Pardo OS; Jackson JM
    Nat Commun; 2023 Nov; 14(1):7336. PubMed ID: 37957142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electrical resistivity of liquid Fe to 12 GPa: Implications for heat flow in cores of terrestrial bodies.
    Silber RE; Secco RA; Yong W; Littleton JAH
    Sci Rep; 2018 Jul; 8(1):10758. PubMed ID: 30018313
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stability of body-centered cubic iron-magnesium alloys in the Earth's inner core.
    Kádas K; Vitos L; Johansson B; Ahuja R
    Proc Natl Acad Sci U S A; 2009 Sep; 106(37):15560-2. PubMed ID: 19805214
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental constraints on light elements in the Earth's outer core.
    Zhang Y; Sekine T; He H; Yu Y; Liu F; Zhang M
    Sci Rep; 2016 Mar; 6():22473. PubMed ID: 26932596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melting of the Earth's inner core.
    Gubbins D; Sreenivasan B; Mound J; Rost S
    Nature; 2011 May; 473(7347):361-3. PubMed ID: 21593868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.