These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 32621237)

  • 1. Radiomics nomogram for the prediction of 2019 novel coronavirus pneumonia caused by SARS-CoV-2.
    Fang X; Li X; Bian Y; Ji X; Lu J
    Eur Radiol; 2020 Dec; 30(12):6888-6901. PubMed ID: 32621237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of chest CT findings between COVID-19 pneumonia and other types of viral pneumonia: a two-center retrospective study.
    Li X; Fang X; Bian Y; Lu J
    Eur Radiol; 2020 Oct; 30(10):5470-5478. PubMed ID: 32394279
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and multicenter validation of a CT-based radiomics signature for predicting severe COVID-19 pneumonia.
    Li L; Wang L; Zeng F; Peng G; Ke Z; Liu H; Zha Y
    Eur Radiol; 2021 Oct; 31(10):7901-7912. PubMed ID: 33786655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CT radiomics facilitates more accurate diagnosis of COVID-19 pneumonia: compared with CO-RADS.
    Liu H; Ren H; Wu Z; Xu H; Zhang S; Li J; Hou L; Chi R; Zheng H; Chen Y; Duan S; Li H; Xie Z; Wang D
    J Transl Med; 2021 Jan; 19(1):29. PubMed ID: 33413480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics Is Effective for Distinguishing Coronavirus Disease 2019 Pneumonia From Influenza Virus Pneumonia.
    Lin L; Liu J; Deng Q; Li N; Pan J; Sun H; Quan S
    Front Public Health; 2021; 9():663965. PubMed ID: 34211951
    [No Abstract]   [Full Text] [Related]  

  • 6. CT-based radiomic nomogram for predicting the severity of patients with COVID-19.
    Shi H; Xu Z; Cheng G; Ji H; He L; Zhu J; Hu H; Xie Z; Ao W; Wang J
    Eur J Med Res; 2022 Jan; 27(1):13. PubMed ID: 35078525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation a nomogram for predicting the risk of severe COVID-19: A multi-center study in Sichuan, China.
    Zhou Y; He Y; Yang H; Yu H; Wang T; Chen Z; Yao R; Liang Z
    PLoS One; 2020; 15(5):e0233328. PubMed ID: 32421703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Radiomics Analysis of Computed Tomography helps predict poor prognostic outcome in COVID-19.
    Wu Q; Wang S; Li L; Wu Q; Qian W; Hu Y; Li L; Zhou X; Ma H; Li H; Wang M; Qiu X; Zha Y; Tian J
    Theranostics; 2020; 10(16):7231-7244. PubMed ID: 32641989
    [No Abstract]   [Full Text] [Related]  

  • 9. Exploiting an early warning Nomogram for predicting the risk of ICU admission in patients with COVID-19: a multi-center study in China.
    Zhou Y; He Y; Yang H; Yu H; Wang T; Chen Z; Yao R; Liang Z
    Scand J Trauma Resusc Emerg Med; 2020 Oct; 28(1):106. PubMed ID: 33109234
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel CT-based radiomics in the distinction of severity of coronavirus disease 2019 (COVID-19) pneumonia.
    Xie Z; Sun H; Wang J; Xu H; Li S; Zhao C; Gao Y; Wang X; Zhao T; Duan S; Hu C; Ao W
    BMC Infect Dis; 2021 Jun; 21(1):608. PubMed ID: 34171991
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computed Tomography Radiomics Can Predict Disease Severity and Outcome in Coronavirus Disease 2019 Pneumonia.
    Homayounieh F; Babaei R; Karimi Mobin H; Arru CD; Sharifian M; Mohseni I; Zhang E; Digumarthy SR; Kalra MK
    J Comput Assist Tomogr; 2020; 44(5):640-646. PubMed ID: 32842058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Radiomics nomogram outperforms size criteria in discriminating lymph node metastasis in resectable esophageal squamous cell carcinoma.
    Tan X; Ma Z; Yan L; Ye W; Liu Z; Liang C
    Eur Radiol; 2019 Jan; 29(1):392-400. PubMed ID: 29922924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development and validation of a CT-based nomogram for preoperative prediction of clear cell renal cell carcinoma grades.
    Zheng Z; Chen Z; Xie Y; Zhong Q; Xie W
    Eur Radiol; 2021 Aug; 31(8):6078-6086. PubMed ID: 33515086
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center study.
    Chen X; Tang Y; Mo Y; Li S; Lin D; Yang Z; Yang Z; Sun H; Qiu J; Liao Y; Xiao J; Chen X; Wu X; Wu R; Dai Z
    Eur Radiol; 2020 Sep; 30(9):4893-4902. PubMed ID: 32300971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer.
    Wu S; Zheng J; Li Y; Yu H; Shi S; Xie W; Liu H; Su Y; Huang J; Lin T
    Clin Cancer Res; 2017 Nov; 23(22):6904-6911. PubMed ID: 28874414
    [No Abstract]   [Full Text] [Related]  

  • 16. An AI-based radiomics nomogram for disease prognosis in patients with COVID-19 pneumonia using initial CT images and clinical indicators.
    Zhang M; Zeng X; Huang C; Liu J; Liu X; Xie X; Wang R
    Int J Med Inform; 2021 Oct; 154():104545. PubMed ID: 34464848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preoperative diagnosis of malignant pulmonary nodules in lung cancer screening with a radiomics nomogram.
    Liu A; Wang Z; Yang Y; Wang J; Dai X; Wang L; Lu Y; Xue F
    Cancer Commun (Lond); 2020 Jan; 40(1):16-24. PubMed ID: 32125097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A predictive model and scoring system combining clinical and CT characteristics for the diagnosis of COVID-19.
    Qin L; Yang Y; Cao Q; Cheng Z; Wang X; Sun Q; Yan F; Qu J; Yang W
    Eur Radiol; 2020 Dec; 30(12):6797-6807. PubMed ID: 32607634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and validation of a radiomics nomogram for identifying invasiveness of pulmonary adenocarcinomas appearing as subcentimeter ground-glass opacity nodules.
    Zhao W; Xu Y; Yang Z; Sun Y; Li C; Jin L; Gao P; He W; Wang P; Shi H; Hua Y; Li M
    Eur J Radiol; 2019 Mar; 112():161-168. PubMed ID: 30777206
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of potential severe coronavirus disease 2019 patients based on CT radiomics: A retrospective study.
    Xiao F; Sun R; Sun W; Xu D; Lan L; Li H; Liu H; Xu H
    Med Phys; 2022 Sep; 49(9):5886-5898. PubMed ID: 35837868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.