These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 32621866)

  • 1. The C-Terminus and Third Cytoplasmic Loop Cooperatively Activate Mouse Melanopsin Phototransduction.
    Valdez-Lopez JC; Petr ST; Donohue MP; Bailey RJ; Gebreeziabher M; Cameron EG; Wolf JB; Szalai VA; Robinson PR
    Biophys J; 2020 Jul; 119(2):389-401. PubMed ID: 32621866
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanopsin Carboxy-terminus phosphorylation plasticity and bulk negative charge, not strict site specificity, achieves phototransduction deactivation.
    Valdez-Lopez JC; Gulati S; Ortiz EA; Palczewski K; Robinson PR
    PLoS One; 2020; 15(4):e0228121. PubMed ID: 32236094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice.
    Somasundaram P; Wyrick GR; Fernandez DC; Ghahari A; Pinhal CM; Simmonds Richardson M; Rupp AC; Cui L; Wu Z; Brown RL; Badea TC; Hattar S; Robinson PR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):2741-2746. PubMed ID: 28223508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-dependent phosphorylation of the carboxy tail of mouse melanopsin.
    Blasic JR; Lane Brown R; Robinson PR
    Cell Mol Life Sci; 2012 May; 69(9):1551-62. PubMed ID: 22159583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. β-Arrestin-dependent deactivation of mouse melanopsin.
    Cameron EG; Robinson PR
    PLoS One; 2014; 9(11):e113138. PubMed ID: 25401926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein Phosphatase 2A and Clathrin-Mediated Endocytosis Facilitate Robust Melanopsin Light Responses and Resensitization.
    Valdez-Lopez JC; Gebreegziabher M; Bailey RJ; Flores J; Awotunde O; Burnett T; Robinson PR
    Invest Ophthalmol Vis Sci; 2020 Oct; 61(12):10. PubMed ID: 33049058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells.
    Mure LS; Hatori M; Zhu Q; Demas J; Kim IM; Nayak SK; Panda S
    Neuron; 2016 Jun; 90(5):1016-27. PubMed ID: 27181062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular determinants of response kinetics of mouse M1 intrinsically-photosensitive retinal ganglion cells.
    Sheng Y; Chen L; Ren X; Jiang Z; Yau KW
    Sci Rep; 2021 Dec; 11(1):23424. PubMed ID: 34873237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sustained Melanopsin Photoresponse Is Supported by Specific Roles of β-Arrestin 1 and 2 in Deactivation and Regeneration of Photopigment.
    Mure LS; Hatori M; Ruda K; Benegiamo G; Demas J; Panda S
    Cell Rep; 2018 Nov; 25(9):2497-2509.e4. PubMed ID: 30485815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melanopsin Phototransduction Is Repurposed by ipRGC Subtypes to Shape the Function of Distinct Visual Circuits.
    Sonoda T; Lee SK; Birnbaumer L; Schmidt TM
    Neuron; 2018 Aug; 99(4):754-767.e4. PubMed ID: 30017393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorylation of mouse melanopsin by protein kinase A.
    Blasic JR; Brown RL; Robinson PR
    PLoS One; 2012; 7(9):e45387. PubMed ID: 23049792
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phosphorylation of rat melanopsin at Ser-381 and Ser-398 by light/dark and its importance for intrinsically photosensitive ganglion cells (ipRGCs) cellular Ca2+ signaling.
    Fahrenkrug J; Falktoft B; Georg B; Hannibal J; Kristiansen SB; Klausen TK
    J Biol Chem; 2014 Dec; 289(51):35482-93. PubMed ID: 25378407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Loss of gq/11 genes does not abolish melanopsin phototransduction.
    Chew KS; Schmidt TM; Rupp AC; Kofuji P; Trimarchi JM
    PLoS One; 2014; 9(5):e98356. PubMed ID: 24870805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin.
    Fu Y; Zhong H; Wang MH; Luo DG; Liao HW; Maeda H; Hattar S; Frishman LJ; Yau KW
    Proc Natl Acad Sci U S A; 2005 Jul; 102(29):10339-44. PubMed ID: 16014418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanopsin Contributions to the Representation of Images in the Early Visual System.
    Allen AE; Storchi R; Martial FP; Bedford RA; Lucas RJ
    Curr Biol; 2017 Jun; 27(11):1623-1632.e4. PubMed ID: 28528909
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanopsin phototransduction: slowly emerging from the dark.
    Hughes S; Hankins MW; Foster RG; Peirson SN
    Prog Brain Res; 2012; 199():19-40. PubMed ID: 22877657
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melanopsin--shedding light on the elusive circadian photopigment.
    Brown RL; Robinson PR
    Chronobiol Int; 2004 Mar; 21(2):189-204. PubMed ID: 15332341
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanopsin phototransduction: beyond canonical cascades.
    Contreras E; Nobleman AP; Robinson PR; Schmidt TM
    J Exp Biol; 2021 Dec; 224(23):. PubMed ID: 34842918
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defining the impact of melanopsin missense polymorphisms using in vivo functional rescue.
    Rodgers J; Hughes S; Pothecary CA; Brown LA; Hickey DG; Peirson SN; Hankins MW
    Hum Mol Genet; 2018 Aug; 27(15):2589-2603. PubMed ID: 29718372
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Illumination of the melanopsin signaling pathway.
    Panda S; Nayak SK; Campo B; Walker JR; Hogenesch JB; Jegla T
    Science; 2005 Jan; 307(5709):600-4. PubMed ID: 15681390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.