BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

412 related articles for article (PubMed ID: 32621947)

  • 21. Microalgae as source of polyhydroxyalkanoates (PHAs) - A review.
    Costa SS; Miranda AL; de Morais MG; Costa JAV; Druzian JI
    Int J Biol Macromol; 2019 Jun; 131():536-547. PubMed ID: 30885732
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Production of polyhydroxyalkanoates, a family of biodegradable plastics and elastomers, in bacteria and plants.
    Poirier Y; Nawrath C; Somerville C
    Biotechnology (N Y); 1995 Feb; 13(2):142-50. PubMed ID: 9634754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineered biosynthesis of biodegradable polymers.
    Jambunathan P; Zhang K
    J Ind Microbiol Biotechnol; 2016 Aug; 43(8):1037-58. PubMed ID: 27260524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comprehensive overview and recent advances on polyhydroxyalkanoates (PHA) production using various organic waste streams.
    Ganesh Saratale R; Cho SK; Dattatraya Saratale G; Kadam AA; Ghodake GS; Kumar M; Naresh Bharagava R; Kumar G; Su Kim D; Mulla SI; Seung Shin H
    Bioresour Technol; 2021 Apr; 325():124685. PubMed ID: 33508681
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Carbon Recycling of High Value Bioplastics: A Route to a Zero-Waste Future.
    Keith M; Koller M; Lackner M
    Polymers (Basel); 2024 Jun; 16(12):. PubMed ID: 38931972
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Leads and hurdles to sustainable microbial bioplastic production.
    Varghese S; Dhanraj ND; Rebello S; Sindhu R; Binod P; Pandey A; Jisha MS; Awasthi MK
    Chemosphere; 2022 Oct; 305():135390. PubMed ID: 35728665
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recycling strategies for polyhydroxyalkanoate-based waste materials: An overview.
    Vu DH; Åkesson D; Taherzadeh MJ; Ferreira JA
    Bioresour Technol; 2020 Feb; 298():122393. PubMed ID: 31757612
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bacterial polyhydroxyalkanoates: Still fabulous?
    Możejko-Ciesielska J; Kiewisz R
    Microbiol Res; 2016 Nov; 192():271-282. PubMed ID: 27664746
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Production of polyhydroxyalkanoates (PHAs) from waste materials and by-products by submerged and solid-state fermentation.
    Castilho LR; Mitchell DA; Freire DM
    Bioresour Technol; 2009 Dec; 100(23):5996-6009. PubMed ID: 19581084
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria.
    Nikodinovic-Runic J; Guzik M; Kenny ST; Babu R; Werker A; O Connor KE
    Adv Appl Microbiol; 2013; 84():139-200. PubMed ID: 23763760
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microbial cell factories for the production of polyhydroxyalkanoates.
    Nagarajan D; Aristya GR; Lin YJ; Chang JJ; Yen HW; Chang JS
    Essays Biochem; 2021 Jul; 65(2):337-353. PubMed ID: 34132340
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent updates to microbial production and recovery of polyhydroxyalkanoates.
    de Melo RN; de Souza Hassemer G; Steffens J; Junges A; Valduga E
    3 Biotech; 2023 Jun; 13(6):204. PubMed ID: 37223002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Marine biodegradation of tailor-made polyhydroxyalkanoates (PHA) influenced by the chemical structure and associated bacterial communities.
    Derippe G; Philip L; Lemechko P; Eyheraguibel B; Meistertzheim AL; Pujo-Pay M; Conan P; Barbe V; Bruzaud S; Ghiglione JF
    J Hazard Mater; 2024 Jan; 462():132782. PubMed ID: 37856958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Engineering progress in microbial production of polyhydroxyalkanoates].
    Yuan K; Zhou W; Peng C; Tang T; Wang Q; Tang W; An T; Chen B; Liu H; Wu L; Li Y; Tong Y
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):384-394. PubMed ID: 33645142
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Marine-Derived Actinomycetes: Biodegradation of Plastics and Formation of PHA Bioplastics-A Circular Bioeconomy Approach.
    Oliveira J; Almeida PL; Sobral RG; Lourenço ND; Gaudêncio SP
    Mar Drugs; 2022 Dec; 20(12):. PubMed ID: 36547907
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Role of Bacterial Polyhydroalkanoate (PHA) in a Sustainable Future: A Review on the Biological Diversity.
    Vicente D; Proença DN; Morais PV
    Int J Environ Res Public Health; 2023 Feb; 20(4):. PubMed ID: 36833658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The degradation of single-use plastics and commercially viable bioplastics in the environment: A review.
    Idris SN; Amelia TSM; Bhubalan K; Lazim AMM; Zakwan NAMA; Jamaluddin MI; Santhanam R; Amirul AA; Vigneswari S; Ramakrishna S
    Environ Res; 2023 Aug; 231(Pt 1):115988. PubMed ID: 37105296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources.
    Jo SY; Son J; Sohn YJ; Lim SH; Lee JY; Yoo JI; Park SY; Na JG; Park SJ
    Int J Biol Macromol; 2021 Dec; 192():978-998. PubMed ID: 34656544
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [The degradation of plastics and the production of polyhydroxyalkanoates (PHA)].
    Zhang Z; He H; Zhang X; Zheng S; Zheng T; Liu X; Chen G
    Sheng Wu Gong Cheng Xue Bao; 2023 May; 39(5):2053-2069. PubMed ID: 37212231
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Carbon Sources for Polyhydroxyalkanoates and an Integrated Biorefinery.
    Jiang G; Hill DJ; Kowalczuk M; Johnston B; Adamus G; Irorere V; Radecka I
    Int J Mol Sci; 2016 Jul; 17(7):. PubMed ID: 27447619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.