BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 32621947)

  • 41. Methylosinus trichosporium OB3b bioaugmentation unleashes polyhydroxybutyrate-accumulating potential in waste-activated sludge.
    Eam H; Ko D; Lee C; Myung J
    Microb Cell Fact; 2024 May; 23(1):160. PubMed ID: 38822346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effects of different sodium salts and nitrogen sources on the production of 3-hydroxybutyrate and polyhydroxybutyrate by Burkholderia cepacia.
    Wang J; Huang J; Guo H; Jiang S; Qiao J; Chen X; Qu Z; Cui W; Liu S
    Bioresour Bioprocess; 2021 Jul; 8(1):64. PubMed ID: 38650234
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Green alternatives to petroleum-based plastics: production of bioplastic from Pseudomonas neustonica strain NGB15 using waste carbon source.
    Baltacı NG; Baltacı MÖ; Görmez A; Örtücü S
    Environ Sci Pollut Res Int; 2024 May; 31(21):31149-31158. PubMed ID: 38625463
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Biocompatible and Biodegradable 3D Printing from Bioplastics: A Review.
    Andanje MN; Mwangi JW; Mose BR; Carrara S
    Polymers (Basel); 2023 May; 15(10):. PubMed ID: 37242930
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources.
    Ray S; Jin JO; Choi I; Kim M
    Front Bioeng Biotechnol; 2022; 10():907500. PubMed ID: 36686222
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Editorial: Advances and trends in microbial production of biopolymers and their building blocks.
    Feng X; Jiang X; Zhao G
    Front Bioeng Biotechnol; 2022; 10():1025797. PubMed ID: 36237213
    [No Abstract]   [Full Text] [Related]  

  • 47.
    Leadbeater DR; Bruce NC; Tonon T
    Microb Genom; 2022 Sep; 8(9):. PubMed ID: 36125959
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A comparative analysis of biopolymer production by microbial and bioelectrochemical technologies.
    Alvarez Chavez B; Raghavan V; Tartakovsky B
    RSC Adv; 2022 May; 12(25):16105-16118. PubMed ID: 35733669
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Developing Microbial Co-Culture System for Enhanced Polyhydroxyalkanoates (PHA) Production Using Acid Pretreated Lignocellulosic Biomass.
    Saratale RG; Cho SK; Kadam AA; Ghodake GS; Kumar M; Bharagava RN; Varjani S; Nair S; Kim DS; Shin HS; Saratale GD
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215639
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Insightful Advancement and Opportunities for Microbial Bioplastic Production.
    Samadhiya K; Sangtani R; Nogueira R; Bala K
    Front Microbiol; 2021; 12():674864. PubMed ID: 35058887
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Heterologous phasin expression in
    Brown B; Immethun C; Alsiyabi A; Long D; Wilkins M; Saha R
    Metab Eng Commun; 2022 Jun; 14():e00191. PubMed ID: 35028290
    [No Abstract]   [Full Text] [Related]  

  • 52. Recent Advances in the Biosynthesis of Polyhydroxyalkanoates from Lignocellulosic Feedstocks.
    Vigneswari S; Noor MSM; Amelia TSM; Balakrishnan K; Adnan A; Bhubalan K; Amirul AA; Ramakrishna S
    Life (Basel); 2021 Aug; 11(8):. PubMed ID: 34440551
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complete genome sequence of Photobacterium ganghwense C2.2: A new polyhydroxyalkanoate production candidate.
    Lascu I; Mereuță I; Chiciudean I; Hansen H; Avramescu SM; Tănase AM; Stoica I
    Microbiologyopen; 2021 Mar; 10(2):e1182. PubMed ID: 33970538
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Optimization of Inulin Hydrolysis by
    Corrado I; Cascelli N; Ntasi G; Birolo L; Sannia G; Pezzella C
    Front Bioeng Biotechnol; 2021; 9():616908. PubMed ID: 33732688
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources.
    Nduko JM; Taguchi S
    Front Bioeng Biotechnol; 2020; 8():618077. PubMed ID: 33614605
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Surface-Modified Highly Biocompatible Bacterial-poly(3-hydroxybutyrate-
    Chai JM; Amelia TSM; Mouriya GK; Bhubalan K; Amirul AA; Vigneswari S; Ramakrishna S
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33375622
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The Thermal Properties and Degradability of Chiral Polyester-Imides Based on Several l/d-Amino Acids.
    Qi C; Yang W; He F; Yao J
    Polymers (Basel); 2020 Sep; 12(9):. PubMed ID: 32916788
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Current trends in the production of biodegradable bioplastics: The case of polyhydroxyalkanoates.
    Medeiros Garcia Alcântara J; Distante F; Storti G; Moscatelli D; Morbidelli M; Sponchioni M
    Biotechnol Adv; 2020; 42():107582. PubMed ID: 32621947
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The General Composition of Polyhydroxyalkanoates and Factors that Influence their Production and Biosynthesis.
    Ene N; Savoiu VG; Spiridon M; Paraschiv CI; Vamanu E
    Curr Pharm Des; 2023; 29(39):3089-3102. PubMed ID: 38099526
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Commercialization of bacterial cell factories for the sustainable production of polyhydroxyalkanoate thermoplastics: progress and prospects.
    Kumar A; Srivastava JK; Mallick N; Singh AK
    Recent Pat Biotechnol; 2015; 9(1):4-21. PubMed ID: 26073514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.