These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 32621947)

  • 61. Site-specific response of sediment microbial community to supplementation of polyhydroxyalkanoates as biostimulants for PCB reductive dechlorination.
    Botti A; Musmeci E; Negroni A; Capuozzo R; Fava F; Biagi E; Zanaroli G
    Sci Total Environ; 2023 Nov; 898():165485. PubMed ID: 37442469
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Valorization of polyhydroxyalkanoates production process by co-synthesis of value-added products.
    Kumar P; Kim BS
    Bioresour Technol; 2018 Dec; 269():544-556. PubMed ID: 30201320
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Recent developments in Polyhydroxyalkanoates (PHAs) production - A review.
    Sabapathy PC; Devaraj S; Meixner K; Anburajan P; Kathirvel P; Ravikumar Y; Zabed HM; Qi X
    Bioresour Technol; 2020 Jun; 306():123132. PubMed ID: 32220472
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Production of Polyhydroxybutyrate (PHB) and Factors Impacting Its Chemical and Mechanical Characteristics.
    McAdam B; Brennan Fournet M; McDonald P; Mojicevic M
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33291620
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Comparison of the aerobic biodegradation of biopolymers and the corresponding bioplastics: A review.
    Polman EMN; Gruter GM; Parsons JR; Tietema A
    Sci Total Environ; 2021 Jan; 753():141953. PubMed ID: 32896737
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A review on the potential of polyhydroxyalkanoates production from oil-based substrates.
    Chien Bong CP; Alam MNHZ; Samsudin SA; Jamaluddin J; Adrus N; Mohd Yusof AH; Muis ZA; Hashim H; Salleh MM; Abdullah AR; Chuprat BRB
    J Environ Manage; 2021 Nov; 298():113461. PubMed ID: 34435568
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Can bioplastics always offer a truly sustainable alternative to fossil-based plastics?
    Serrano-Aguirre L; Prieto MA
    Microb Biotechnol; 2024 Apr; 17(4):e14458. PubMed ID: 38568795
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Polyhydroxyalkanoates synthesis by halophiles and thermophiles: towards sustainable production of microbial bioplastics.
    Obruča S; Dvořák P; Sedláček P; Koller M; Sedlář K; Pernicová I; Šafránek D
    Biotechnol Adv; 2022 Sep; 58():107906. PubMed ID: 35033587
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Production of polyhydroxyalkanoates by mixed microbial cultures.
    Reis MA; Serafim LS; Lemos PC; Ramos AM; Aguiar FR; Van Loosdrecht MC
    Bioprocess Biosyst Eng; 2003 Jul; 25(6):377-85. PubMed ID: 13680343
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Recent Progress in Polyhydroxyalkanoates-Based Copolymers for Biomedical Applications.
    Luo Z; Wu YL; Li Z; Loh XJ
    Biotechnol J; 2019 Dec; 14(12):e1900283. PubMed ID: 31469496
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Prospects for the Use of Whey for Polyhydroxyalkanoate (PHA) Production.
    Amaro TMMM; Rosa D; Comi G; Iacumin L
    Front Microbiol; 2019; 10():992. PubMed ID: 31143164
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications - Review.
    Butt FI; Muhammad N; Hamid A; Moniruzzaman M; Sharif F
    Int J Biol Macromol; 2018 Dec; 120(Pt A):1294-1305. PubMed ID: 30189278
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Current trends in biodegradable polyhydroxyalkanoates.
    Chanprateep S
    J Biosci Bioeng; 2010 Dec; 110(6):621-32. PubMed ID: 20719562
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Polyhydroxyalkanoates: bioplastics with a green agenda.
    Keshavarz T; Roy I
    Curr Opin Microbiol; 2010 Jun; 13(3):321-6. PubMed ID: 20227907
    [TBL] [Abstract][Full Text] [Related]  

  • 75. The Patent Landscape of Polyhydroxyalkanoates Production by Algae and Cyanobacteria.
    Procópio DP; Cardoso LOB; Borrego BB; Gracioso LH; Oller Nascimento CA; Perpetuo EA; Stevani CV; Freire RS
    Recent Pat Biotechnol; 2023; 17(3):271-288. PubMed ID: 36503455
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production.
    Sindhu R; Madhavan A; Arun KB; Pugazhendhi A; Reshmy R; Awasthi MK; Sirohi R; Tarafdar A; Pandey A; Binod P
    Bioresour Technol; 2021 May; 327():124791. PubMed ID: 33579565
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Native feedstock options for the polyhydroxyalkanoate industry in Europe: A review.
    Gutschmann B; Huang B; Santolin L; Thiele I; Neubauer P; Riedel SL
    Microbiol Res; 2022 Nov; 264():127177. PubMed ID: 36058055
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: insights from the recombinant Escherichia coli.
    Leong YK; Show PL; Ooi CW; Ling TC; Lan JC
    J Biotechnol; 2014 Jun; 180():52-65. PubMed ID: 24698847
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Production of Polyhydroxyalkanoates from Sludge Palm Oil Using
    Kang DK; Lee CR; Lee SH; Bae JH; Park YK; Rhee YH; Sung BH; Sohn JH
    J Microbiol Biotechnol; 2017 May; 27(5):990-994. PubMed ID: 28274100
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biomedical applications of environmental friendly poly-hydroxyalkanoates.
    Ansari S; Sami N; Yasin D; Ahmad N; Fatma T
    Int J Biol Macromol; 2021 Jul; 183():549-563. PubMed ID: 33932421
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.