These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 32621947)

  • 81. Biomedical applications of environmental friendly poly-hydroxyalkanoates.
    Ansari S; Sami N; Yasin D; Ahmad N; Fatma T
    Int J Biol Macromol; 2021 Jul; 183():549-563. PubMed ID: 33932421
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Biopackaging Potential Alternatives: Bioplastic Composites of Polyhydroxyalkanoates and Vegetal Fibers.
    Gómez-Gast N; López Cuellar MDR; Vergara-Porras B; Vieyra H
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335445
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Recent trends of biotechnological production of polyhydroxyalkanoates from C1 carbon sources.
    Ray S; Jin JO; Choi I; Kim M
    Front Bioeng Biotechnol; 2022; 10():907500. PubMed ID: 36686222
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Can biotechnology turn the tide on plastics?
    Brandon AM; Criddle CS
    Curr Opin Biotechnol; 2019 Jun; 57():160-166. PubMed ID: 31075553
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Effect of nutritional supplements on bio-plastics (PHB) production utilizing sugar refinery waste with potential application in food packaging.
    Tripathi AD; Raj Joshi T; Kumar Srivastava S; Darani KK; Khade S; Srivastava J
    Prep Biochem Biotechnol; 2019; 49(6):567-577. PubMed ID: 30929621
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Tailored biosynthesis of polyhydroxyalkanoates in chemostat cultures.
    Amstutz V; Hanik N; Pott J; Utsunomia C; Zinn M
    Methods Enzymol; 2019; 627():99-123. PubMed ID: 31630749
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering.
    Al-Khairy D; Fu W; Alzahmi AS; Twizere JC; Amin SA; Salehi-Ashtiani K; Mystikou A
    Microorganisms; 2022 Nov; 10(12):. PubMed ID: 36557574
    [TBL] [Abstract][Full Text] [Related]  

  • 88. A comprehensive review on recent advancements in biodegradation and sustainable management of biopolymers.
    Awasthi SK; Kumar M; Kumar V; Sarsaiya S; Anerao P; Ghosh P; Singh L; Liu H; Zhang Z; Awasthi MK
    Environ Pollut; 2022 Aug; 307():119600. PubMed ID: 35691442
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Bacterial polyhydroxyalkanoates.
    Lee SY
    Biotechnol Bioeng; 1996 Jan; 49(1):1-14. PubMed ID: 18623547
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Recent Biotechnological Applications of Polyhydroxyalkanoates (PHA) in the Biomedical Sector-A Review.
    Diniz MSDF; Mourão MM; Xavier LP; Santos AV
    Polymers (Basel); 2023 Nov; 15(22):. PubMed ID: 38006129
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Microbial Production of Biodegradable Lactate-Based Polymers and Oligomeric Building Blocks From Renewable and Waste Resources.
    Nduko JM; Taguchi S
    Front Bioeng Biotechnol; 2020; 8():618077. PubMed ID: 33614605
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Polyhydroxyalkanoates: Trends and advances toward biotechnological applications.
    Kalia VC; Singh Patel SK; Shanmugam R; Lee JK
    Bioresour Technol; 2021 Apr; 326():124737. PubMed ID: 33515915
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Conversion of industrial food wastes by Alcaligenes latus into polyhydroxyalkanoates.
    Yu PH; Chua H; Huang AL; Ho KP
    Appl Biochem Biotechnol; 1999; 77-79():445-54. PubMed ID: 15304714
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Biosynthesis, modification, and biodegradation of bacterial medium-chain-length polyhydroxyalkanoates.
    Kim DY; Kim HW; Chung MG; Rhee YH
    J Microbiol; 2007 Apr; 45(2):87-97. PubMed ID: 17483792
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Film forming microbial biopolymers for commercial applications--a review.
    Vijayendra SV; Shamala TR
    Crit Rev Biotechnol; 2014 Dec; 34(4):338-57. PubMed ID: 23919238
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Methods of synthesis, properties and biomedical applications of polyhydroxyalkanoates: a review.
    Grigore ME; Grigorescu RM; Iancu L; Ion RM; Zaharia C; Andrei ER
    J Biomater Sci Polym Ed; 2019; 30(9):695-712. PubMed ID: 31012805
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory.
    Mitra R; Xu T; Xiang H; Han J
    Microb Cell Fact; 2020 Apr; 19(1):86. PubMed ID: 32264891
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics.
    Marcos-García M; García-Fraile P; Filipová A; Menéndez E; Mateos PF; Velázquez E; Cajthaml T; Rivas R
    Environ Sci Pollut Res Int; 2017 Jul; 24(21):17436-17445. PubMed ID: 28593540
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Potential perspectives of biodegradable plastics for food packaging application-review of properties and recent developments.
    Din MI; Ghaffar T; Najeeb J; Hussain Z; Khalid R; Zahid H
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2020 Apr; 37(4):665-680. PubMed ID: 32049609
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Environmental evaluation of polyhydroxyalkanoates from animal slaughtering waste using Material Input Per Service Unit.
    Ali N; Rashid MI; Rehan M; Shah Eqani SAMA; Summan ASA; Ismail IMI; Koller M; Ali AM; Shahzad K
    N Biotechnol; 2023 Jul; 75():40-51. PubMed ID: 36948413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.