These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32622279)
1. Volatile fatty acids production from biowaste at mechanical-biological treatment plants: Focusing on fermentation temperature. Fernández-Domínguez D; Astals S; Peces M; Frison N; Bolzonella D; Mata-Alvarez J; Dosta J Bioresour Technol; 2020 Oct; 314():123729. PubMed ID: 32622279 [TBL] [Abstract][Full Text] [Related]
2. Volatile fatty acid production from mesophilic acidogenic fermentation of organic fraction of municipal solid waste and food waste under acidic and alkaline pH. Cheah YK; Vidal-Antich C; Dosta J; Mata-Álvarez J Environ Sci Pollut Res Int; 2019 Dec; 26(35):35509-35522. PubMed ID: 31111388 [TBL] [Abstract][Full Text] [Related]
3. Selective VFA production potential from organic waste streams: Assessing temperature and pH influence. Garcia-Aguirre J; Aymerich E; González-Mtnez de Goñi J; Esteban-Gutiérrez M Bioresour Technol; 2017 Nov; 244(Pt 1):1081-1088. PubMed ID: 28851164 [TBL] [Abstract][Full Text] [Related]
4. Influence of temperature on enhancement of volatile fatty acids fermentation from organic fraction of municipal solid waste: Synergism between food and paper components. Soomro AF; Abbasi IA; Ni Z; Ying L; Liu J Bioresour Technol; 2020 May; 304():122980. PubMed ID: 32062392 [TBL] [Abstract][Full Text] [Related]
5. Temperature-driven carboxylic acid production from waste activated sludge and food waste: Co-fermentation performance and microbial dynamics. Perez-Esteban N; Vives-Egea J; Peces M; Dosta J; Astals S Waste Manag; 2024 Apr; 178():176-185. PubMed ID: 38401431 [TBL] [Abstract][Full Text] [Related]
6. Enhancement of Volatile Fatty Acids Production from Food Waste by Mature Compost Addition. Cheah YK; Dosta J; Mata-Álvarez J Molecules; 2019 Aug; 24(16):. PubMed ID: 31426488 [TBL] [Abstract][Full Text] [Related]
7. Assessing the potential of waste activated sludge and food waste co-fermentation for carboxylic acids production. Vidal-Antich C; Perez-Esteban N; Astals S; Peces M; Mata-Alvarez J; Dosta J Sci Total Environ; 2021 Feb; 757():143763. PubMed ID: 33288258 [TBL] [Abstract][Full Text] [Related]
8. Effects of different temperatures and pH values on volatile fatty acids production during codigestion of food waste and thermal-hydrolysed sewage sludge and subsequent volatile fatty acids for polyhydroxyalkanoates production. Gong X; Wu M; Jiang Y; Wang H Bioresour Technol; 2021 Aug; 333():125149. PubMed ID: 33901914 [TBL] [Abstract][Full Text] [Related]
9. Production of propionic acid-enriched volatile fatty acids from co-fermentation liquid of sewage sludge and food waste using Propionibacterium acidipropionici. Li X; Mu H; Chen Y; Zheng X; Luo J; Zhao S Water Sci Technol; 2013; 68(9):2061-6. PubMed ID: 24225109 [TBL] [Abstract][Full Text] [Related]
10. From sewage sludge and agri-food waste to VFA: Individual acid production potential and up-scaling. Esteban-Gutiérrez M; Garcia-Aguirre J; Irizar I; Aymerich E Waste Manag; 2018 Jul; 77():203-212. PubMed ID: 30008410 [TBL] [Abstract][Full Text] [Related]
11. Optimization of urban waste fermentation for volatile fatty acids production. Moretto G; Valentino F; Pavan P; Majone M; Bolzonella D Waste Manag; 2019 Jun; 92():21-29. PubMed ID: 31160023 [TBL] [Abstract][Full Text] [Related]
12. Influence of initial pH on the production of volatile fatty acids and hydrogen during dark fermentation of kitchen waste. Slezak R; Grzelak J; Krzystek L; Ledakowicz S Environ Technol; 2021 Nov; 42(27):4269-4278. PubMed ID: 32255721 [TBL] [Abstract][Full Text] [Related]
13. Long-term alkaline volatile fatty acids production from waste streams: Impact of pH and dominance of Dysgonomonadaceae. Owusu-Agyeman I; Plaza E; Cetecioglu Z Bioresour Technol; 2022 Feb; 346():126621. PubMed ID: 34958905 [TBL] [Abstract][Full Text] [Related]
14. Bioconversion of food waste to volatile fatty acids: Impact of microbial community, pH and retention time. Khatami K; Atasoy M; Ludtke M; Baresel C; Eyice Ö; Cetecioglu Z Chemosphere; 2021 Jul; 275():129981. PubMed ID: 33662716 [TBL] [Abstract][Full Text] [Related]
15. Volatile fatty acids production from sewage organic matter by combined bioflocculation and anaerobic fermentation. Khiewwijit R; Keesman KJ; Rijnaarts H; Temmink H Bioresour Technol; 2015 Oct; 193():150-5. PubMed ID: 26133471 [TBL] [Abstract][Full Text] [Related]
16. Effect of different vegetable wastes on the performance of volatile fatty acids production by anaerobic fermentation. Zhang Q; Lu Y; Zhou X; Wang X; Zhu J Sci Total Environ; 2020 Dec; 748():142390. PubMed ID: 33113691 [TBL] [Abstract][Full Text] [Related]
17. Production of volatile fatty acids from sewage organic matter by combined bioflocculation and alkaline fermentation. Khiewwijit R; Temmink H; Labanda A; Rijnaarts H; Keesman KJ Bioresour Technol; 2015 Dec; 197():295-301. PubMed ID: 26342342 [TBL] [Abstract][Full Text] [Related]
18. VFA generation from waste activated sludge: effect of temperature and mixing. Yuan Q; Sparling R; Oleszkiewicz JA Chemosphere; 2011 Jan; 82(4):603-7. PubMed ID: 21075416 [TBL] [Abstract][Full Text] [Related]
19. Mesophilic, thermophilic and hyperthermophilic acidogenic fermentation of food waste in batch: Effect of inoculum source. Arras W; Hussain A; Hausler R; Guiot SR Waste Manag; 2019 Mar; 87():279-287. PubMed ID: 31109527 [TBL] [Abstract][Full Text] [Related]
20. Ammonia recovery from acidogenic fermentation effluents using a gas-permeable membrane contactor. Serra-Toro A; Vinardell S; Astals S; Madurga S; Llorens J; Mata-Álvarez J; Mas F; Dosta J Bioresour Technol; 2022 Jul; 356():127273. PubMed ID: 35526718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]