These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32622279)
21. Influences of volatile solid concentration, temperature and solid retention time for the hydrolysis of waste activated sludge to recover volatile fatty acids. Xiong H; Chen J; Wang H; Shi H Bioresour Technol; 2012 Sep; 119():285-92. PubMed ID: 22750494 [TBL] [Abstract][Full Text] [Related]
22. The inhibitory effect of thiosulfinate on volatile fatty acid and hydrogen production from anaerobic co-fermentation of food waste and waste activated sludge. Tao Z; Yang Q; Yao F; Huang X; Wu Y; Du M; Chen S; Liu X; Li X; Wang D Bioresour Technol; 2020 Feb; 297():122428. PubMed ID: 31786038 [TBL] [Abstract][Full Text] [Related]
23. Production of volatile fatty acids through co-digestion of sewage sludge and external organic waste: Effect of substrate proportions and long-term operation. Owusu-Agyeman I; Plaza E; Cetecioglu Z Waste Manag; 2020 Jul; 112():30-39. PubMed ID: 32497899 [TBL] [Abstract][Full Text] [Related]
24. Continuous acidogenic fermentation: Narrowing the gap between laboratory testing and industrial application. Garcia-Aguirre J; Esteban-Gutiérrez M; Irizar I; González-Mtnez de Goñi J; Aymerich E Bioresour Technol; 2019 Jun; 282():407-416. PubMed ID: 30884461 [TBL] [Abstract][Full Text] [Related]
25. Biological hydrolysis and acidification of sludge under anaerobic conditions: the effect of sludge type and origin on the production and composition of volatile fatty acids. Ucisik AS; Henze M Water Res; 2008 Aug; 42(14):3729-38. PubMed ID: 18703214 [TBL] [Abstract][Full Text] [Related]
26. Anaerobic fermentation of organic solid wastes: volatile fatty acid production and separation. Yesil H; Tugtas AE; Bayrakdar A; Calli B Water Sci Technol; 2014; 69(10):2132-8. PubMed ID: 24845331 [TBL] [Abstract][Full Text] [Related]
27. A hybrid dry-fermentation and membrane contactor system: Enhanced volatile fatty acid (VFA) production and recovery from organic solid wastes. Yesil H; Calli B; Tugtas AE Water Res; 2021 Mar; 192():116831. PubMed ID: 33485265 [TBL] [Abstract][Full Text] [Related]
28. Anaerobic fermentation of peanut meal to produce even-chain volatile fatty acids using Zhang L; Fang Q; Huang D; Liu Y; Zeng Y; Xie Y; Luo J Environ Technol; 2021 Oct; 42(24):3820-3831. PubMed ID: 32290782 [TBL] [Abstract][Full Text] [Related]
29. Impacts of seasonal variation on volatile fatty acids production of food waste anaerobic fermentation. Qin W; Han S; Meng F; Chen K; Gao Y; Li J; Lin L; Hu E; Jiang J Sci Total Environ; 2024 Feb; 912():168764. PubMed ID: 38000740 [TBL] [Abstract][Full Text] [Related]
30. Effect of pH on volatile fatty acid production from anaerobic digestion of potato peel waste. Lu Y; Zhang Q; Wang X; Zhou X; Zhu J Bioresour Technol; 2020 Nov; 316():123851. PubMed ID: 32738559 [TBL] [Abstract][Full Text] [Related]
31. Effect of enzymatic pretreatment on solubilization and volatile fatty acid production in fermentation of food waste. Kim HJ; Choi YG; Kim GD; Kim SH; Chung TH Water Sci Technol; 2005; 52(10-11):51-9. PubMed ID: 16459776 [TBL] [Abstract][Full Text] [Related]
32. Acidogenic fermentation of potato peel waste for volatile fatty acids production: Effect of initial organic load. Lu Y; Chen R; Huang L; Wang X; Chou S; Zhu J J Biotechnol; 2023 Sep; 374():114-121. PubMed ID: 37579845 [TBL] [Abstract][Full Text] [Related]
33. Influence of pH and temperature on soluble substrate generation with primary sludge fermentation. Cokgor EU; Oktay S; Tas DO; Zengin GE; Orhon D Bioresour Technol; 2009 Jan; 100(1):380-6. PubMed ID: 18586487 [TBL] [Abstract][Full Text] [Related]
34. An urban biorefinery for food waste and biological sludge conversion into polyhydroxyalkanoates and biogas. Moretto G; Russo I; Bolzonella D; Pavan P; Majone M; Valentino F Water Res; 2020 Mar; 170():115371. PubMed ID: 31835138 [TBL] [Abstract][Full Text] [Related]
35. Thermophilic anaerobic co-digestion of organic fraction of municipal solid waste (OFMSW) with food waste (FW): Enhancement of bio-hydrogen production. Angeriz-Campoy R; Álvarez-Gallego CJ; Romero-García LI Bioresour Technol; 2015 Oct; 194():291-6. PubMed ID: 26210142 [TBL] [Abstract][Full Text] [Related]
36. Pilot-scale fermentation of urban food waste for volatile fatty acids production: The importance of pH. Yu P; Tu W; Wu M; Zhang Z; Wang H Bioresour Technol; 2021 Jul; 332():125116. PubMed ID: 33857863 [TBL] [Abstract][Full Text] [Related]
37. Volatile fatty acids production from anaerobic treatment of cassava waste water: effect of temperature and alkalinity. Hasan SD; Giongo C; Fiorese ML; Gomes SD; Ferrari TC; Savoldi TE Environ Technol; 2015; 36(20):2637-46. PubMed ID: 25885093 [TBL] [Abstract][Full Text] [Related]
38. Upgrading volatile fatty acids production through anaerobic co-fermentation of mushroom residue and sewage sludge: Performance evaluation and kinetic analysis. Fang W; Zhang P; Zhang T; Requeson DC; Poser M J Environ Manage; 2019 Jul; 241():612-618. PubMed ID: 30962005 [TBL] [Abstract][Full Text] [Related]
39. Effect of Fe Kong X; Yu S; Xu S; Fang W; Liu J; Li H Waste Manag; 2018 Jan; 71():719-727. PubMed ID: 28320620 [TBL] [Abstract][Full Text] [Related]
40. Seasonal variations in acidogenic fermentation of filter primary sludge. Ossiansson E; Persson F; Bengtsson S; Cimbritz M; Gustavsson DJI Water Res; 2023 Aug; 242():120181. PubMed ID: 37343334 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]