These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 32622279)
41. Impact of food waste composition on acidogenic co-fermentation with waste activated sludge. Vidal-Antich C; Peces M; Perez-Esteban N; Mata-Alvarez J; Dosta J; Astals S Sci Total Environ; 2022 Nov; 849():157920. PubMed ID: 35952870 [TBL] [Abstract][Full Text] [Related]
42. Thermal hydrolysis pre-treatment has no positive influence on volatile fatty acids production from sewage sludge. Castro-Fernandez A; Taboada-Santos A; Balboa S; Lema JM Bioresour Technol; 2023 May; 376():128839. PubMed ID: 36906240 [TBL] [Abstract][Full Text] [Related]
43. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. Jin Y; Lin Y; Wang P; Jin R; Gao M; Wang Q; Chang TC; Ma H Bioresour Technol; 2019 Nov; 292():121957. PubMed ID: 31430672 [TBL] [Abstract][Full Text] [Related]
44. The capture technology matters: Composition of municipal wastewater solids drives complexity of microbial community structure and volatile fatty acid profile during anaerobic fermentation. Brison A; Rossi P; Gelb A; Derlon N Sci Total Environ; 2022 Apr; 815():152762. PubMed ID: 34990680 [TBL] [Abstract][Full Text] [Related]
45. Effect of primary sludge fermentation products on mass balance for biological treatment. Ubay-Cokgor E; Oktay S; Zengin GE; Artan N; Orhon D Water Sci Technol; 2005; 51(11):105-14. PubMed ID: 16114623 [TBL] [Abstract][Full Text] [Related]
46. Volatile fatty acids production via mixed culture fermentation: Revealing the link between pH, inoculum type and bacterial composition. Atasoy M; Eyice O; Schnürer A; Cetecioglu Z Bioresour Technol; 2019 Nov; 292():121889. PubMed ID: 31394468 [TBL] [Abstract][Full Text] [Related]
47. Converting the organic fraction of solid waste from the city of Abu Dhabi to valuable products via dark fermentation--Economic and energy assessment. Bonk F; Bastidas-Oyanedel JR; Schmidt JE Waste Manag; 2015 Jun; 40():82-91. PubMed ID: 25840736 [TBL] [Abstract][Full Text] [Related]
48. Volatile fatty acid production from saline cooked mussel processing wastewater at low pH. Fra-Vázquez A; Pedrouso A; Val Del Rio A; Mosquera-Corral A Sci Total Environ; 2020 Aug; 732():139337. PubMed ID: 32438163 [TBL] [Abstract][Full Text] [Related]
49. Volatile fatty acid platform - a cornerstone for the circular bioeconomy. Velghe F; De Wilde F; Snellinx S; Farahbakhsh S; Belderbos E; Peral C; Wiedemann A; Hiessl S; Michels J; Pierrard MA; Dietrich T FEMS Microbiol Lett; 2021 May; 368(9):. PubMed ID: 34036338 [TBL] [Abstract][Full Text] [Related]
50. Improving production of volatile fatty acids from food waste fermentation by hydrothermal pretreatment. Yin J; Wang K; Yang Y; Shen D; Wang M; Mo H Bioresour Technol; 2014 Nov; 171():323-9. PubMed ID: 25218204 [TBL] [Abstract][Full Text] [Related]
51. Acidogenic fermentation of food waste for production of volatile fatty acids: Bacterial community analysis and semi-continuous operation. Zhang L; Loh KC; Dai Y; Tong YW Waste Manag; 2020 May; 109():75-84. PubMed ID: 32388405 [TBL] [Abstract][Full Text] [Related]
52. Valorization of agro-industrial wastes to produce volatile fatty acids: combined effect of substrate/inoculum ratio and initial alkalinity. Iglesias-Iglesias R; Fernandez-Feal MMDC; Kennes C; Veiga MC Environ Technol; 2021 Nov; 42(25):3889-3899. PubMed ID: 32167848 [No Abstract] [Full Text] [Related]
53. Bio-based volatile fatty acid production and recovery from waste streams: Current status and future challenges. Atasoy M; Owusu-Agyeman I; Plaza E; Cetecioglu Z Bioresour Technol; 2018 Nov; 268():773-786. PubMed ID: 30030049 [TBL] [Abstract][Full Text] [Related]
54. Valorization of pretreated waste activated sludge to organic acids and biopolymer. Muhorakeye A; Cayetano RD; Kumar AN; Park J; Pandey AK; Kim SH Chemosphere; 2022 Sep; 303(Pt 2):135078. PubMed ID: 35644235 [TBL] [Abstract][Full Text] [Related]
55. Acidogenic fermentation of Scenedesmus sp.-AMDD: Comparison of volatile fatty acids yields between mesophilic and thermophilic conditions. Gruhn M; Frigon JC; Guiot SR Bioresour Technol; 2016 Jan; 200():624-30. PubMed ID: 26551650 [TBL] [Abstract][Full Text] [Related]
56. Influence of volatile solids and pH for the production of volatile fatty acids: Batch fermentation tests using sewage sludge. Presti D; Cosenza A; Capri FC; Gallo G; Alduina R; Mannina G Bioresour Technol; 2021 Dec; 342():125853. PubMed ID: 34536841 [TBL] [Abstract][Full Text] [Related]
57. Polyhydroxyalkanoate production from fermented volatile fatty acids: effect of pH and feeding regimes. Chen H; Meng H; Nie Z; Zhang M Bioresour Technol; 2013 Jan; 128():533-8. PubMed ID: 23201909 [TBL] [Abstract][Full Text] [Related]
58. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses. Wu QL; Guo WQ; Zheng HS; Luo HC; Feng XC; Yin RL; Ren NQ Bioresour Technol; 2016 Sep; 216():653-60. PubMed ID: 27289056 [TBL] [Abstract][Full Text] [Related]
59. Anaerobic digestion of tuna waste for the production of volatile fatty acids. Bermúdez-Penabad N; Kennes C; Veiga MC Waste Manag; 2017 Oct; 68():96-102. PubMed ID: 28629710 [TBL] [Abstract][Full Text] [Related]
60. The effect of initial organic load of the kitchen waste on the production of VFA and H Slezak R; Grzelak J; Krzystek L; Ledakowicz S Waste Manag; 2017 Oct; 68():610-617. PubMed ID: 28642076 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]