These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32622975)

  • 1. Specificity-directed design of a FRET-quenched heptapeptide for assaying thermolysin-like proteases.
    Goulet DL; Fraaz U; Zulich CJ; Pilkington TJ; Siemann S
    Anal Biochem; 2020 Sep; 604():113826. PubMed ID: 32622975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A quenched fluorescent dipeptide for assaying dispase- and thermolysin-like proteases.
    Weimer S; Oertel K; Fuchsbauer HL
    Anal Biochem; 2006 May; 352(1):110-9. PubMed ID: 16564490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate specificity in the highly heterogeneous M4 peptidase family is determined by a small subset of amino acids.
    de Kreij A; Venema G; van den Burg B
    J Biol Chem; 2000 Oct; 275(40):31115-20. PubMed ID: 10869357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Internally Quenched Fluorescent Peptide Substrate for Protealysin.
    Karaseva MA; Chukhontseva KN; Lemeskina IS; Pridatchenko ML; Kostrov SV; Demidyuk IV
    Sci Rep; 2019 Oct; 9(1):14352. PubMed ID: 31586119
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of changing the hydrophobic S1' subsite of thermolysin-like proteases on substrate specificity.
    de Kreij A; van den Burg B; Veltman OR; Vriend G; Venema G; Eijsink VG
    Eur J Biochem; 2001 Sep; 268(18):4985-91. PubMed ID: 11559368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure of gentlyase, the neutral metalloprotease of Paenibacillus polymyxa.
    Ruf A; Stihle M; Benz J; Schmidt M; Sobek H
    Acta Crystallogr D Biol Crystallogr; 2013 Jan; 69(Pt 1):24-31. PubMed ID: 23275160
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-specific and random immobilization of thermolysin-like proteases reflected in the thermal inactivation kinetics.
    Mansfeld J; Ulbrich-Hofmann R
    Biotechnol Appl Biochem; 2000 Dec; 32(3):189-95. PubMed ID: 11115391
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FRET-Based Assays to Determine Calpain Activity.
    McCartney CE; Davies PL
    Methods Mol Biol; 2019; 1915():39-55. PubMed ID: 30617794
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fluorogenic Peptide Substrate for Quantification of Bacterial Enzyme Activities.
    Al-Abdullah IH; Bagramyan K; Bilbao S; Qi M; Kalkum M
    Sci Rep; 2017 Mar; 7():44321. PubMed ID: 28287171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of hydrolysis of dansyl peptide substrates by thermolysin: analysis of fluorescence changes and determination of steady-state kinetic parameters.
    Yang JJ; Van Wart HE
    Biochemistry; 1994 May; 33(21):6508-15. PubMed ID: 8204585
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential.
    Adekoya OA; Sylte I
    Chem Biol Drug Des; 2009 Jan; 73(1):7-16. PubMed ID: 19152630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Purification and characterization of cloned alkaline protease gene of Geobacillus stearothermophilus.
    Iqbal I; Aftab MN; Afzal M; Ur-Rehman A; Aftab S; Zafar A; Ud-Din Z; Khuharo AR; Iqbal J; Ul-Haq I
    J Basic Microbiol; 2015 Feb; 55(2):160-71. PubMed ID: 25224381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boilysin and thermolysin in dipeptide synthesis: a comparative study.
    Kühn D; Dürrschmidt P; Mansfeld J; Ulbrich-Hofmann R
    Biotechnol Appl Biochem; 2002 Aug; 36(1):71-6. PubMed ID: 12149125
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorogenic peptide substrates for carboxydipeptidase activity of cathepsin B.
    Stachowiak K; Tokmina M; Karpińska A; Sosnowska R; Wiczk W
    Acta Biochim Pol; 2004; 51(1):81-92. PubMed ID: 15094828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of structural determinants of the stability of thermolysin-like proteases by molecular modelling and site-directed mutagenesis.
    Veltman OR; Vriend G; Middelhoven PJ; van den Burg B; Venema G; Eijsink VG
    Protein Eng; 1996 Dec; 9(12):1181-9. PubMed ID: 9010931
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deciphering Design Principles of Förster Resonance Energy Transfer-Based Protease Substrates: Thermolysin-Like Protease from
    Ripp S; Turunen P; Minot ED; Rowan AE; Blank KG
    ACS Omega; 2018 Apr; 3(4):4148-4156. PubMed ID: 31458650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering an enzyme to resist boiling.
    Van den Burg B; Vriend G; Veltman OR; Venema G; Eijsink VG
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2056-60. PubMed ID: 9482837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of fluorogenic trypsin peptide substrates based on resonance energy transfer.
    Grahn S; Ullmann D; Jakubke H
    Anal Biochem; 1998 Dec; 265(2):225-31. PubMed ID: 9882396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Arazoformyl dipeptide substrates for thermolysin. Confirmation of a reverse protonation catalytic mechanism.
    Mock WL; Stanford DJ
    Biochemistry; 1996 Jun; 35(23):7369-77. PubMed ID: 8652513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enzymatic characterization of the streptococcal endopeptidase, IdeS, reveals that it is a cysteine protease with strict specificity for IgG cleavage due to exosite binding.
    Vincents B; von Pawel-Rammingen U; Björck L; Abrahamson M
    Biochemistry; 2004 Dec; 43(49):15540-9. PubMed ID: 15581366
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.