These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 32622978)

  • 1. Identification of ligand-binding residues using protein sequence profile alignment and query-specific support vector machine model.
    Hu J; Rao L; Fan X; Zhang G
    Anal Biochem; 2020 Sep; 604():113799. PubMed ID: 32622978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of protein-ATP binding residues using position-specific frequency matrix.
    Hu J; Zheng LL; Bai YS; Zhang KW; Yu DJ; Zhang GJ
    Anal Biochem; 2021 Aug; 626():114241. PubMed ID: 33971164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing query-driven dynamic machine learning model with application to protein-ligand binding sites prediction.
    Yu DJ; Hu J; Li QM; Tang ZM; Yang JY; Shen HB
    IEEE Trans Nanobioscience; 2015 Jan; 14(1):45-58. PubMed ID: 25730499
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TargetDBP: Accurate DNA-Binding Protein Prediction Via Sequence-Based Multi-View Feature Learning.
    Hu J; Zhou XG; Zhu YH; Yu DJ; Zhang GJ
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(4):1419-1429. PubMed ID: 30668479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting protein-ligand binding residues with deep convolutional neural networks.
    Cui Y; Dong Q; Hong D; Wang X
    BMC Bioinformatics; 2019 Feb; 20(1):93. PubMed ID: 30808287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of DNA-binding proteins using support vector machine with sequence information.
    Ma X; Wu J; Xue X
    Comput Math Methods Med; 2013; 2013():524502. PubMed ID: 24151525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DStruBTarget: Integrating Binding Affinity with Structure Similarity for Ligand-Binding Protein Prediction.
    Fan C; Wong PP; Zhao H
    J Chem Inf Model; 2020 Jan; 60(1):400-409. PubMed ID: 31833767
    [No Abstract]   [Full Text] [Related]  

  • 8. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information.
    Liu R; Hu J
    BMC Bioinformatics; 2011 May; 12():207. PubMed ID: 21612668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs.
    Hu J; Li Y; Zhang M; Yang X; Shen HB; Yu DJ
    IEEE/ACM Trans Comput Biol Bioinform; 2017; 14(6):1389-1398. PubMed ID: 27740495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing template-free predictor for targeting protein-ligand binding sites with classifier ensemble and spatial clustering.
    Yu DJ; Hu J; Yang J; Shen HB; Tang J; Yang JY
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(4):994-1008. PubMed ID: 24334392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving protein-protein interactions prediction accuracy using protein evolutionary information and relevance vector machine model.
    An JY; Meng FR; You ZH; Chen X; Yan GY; Hu JP
    Protein Sci; 2016 Oct; 25(10):1825-33. PubMed ID: 27452983
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-partner: a web server to infer interacting partners and binding models.
    Chen YC; Lo YS; Hsu WC; Yang JM
    Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W561-7. PubMed ID: 17517763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boosting Granular Support Vector Machines for the Accurate Prediction of Protein-Nucleotide Binding Sites.
    Zhu YH; Hu J; Qi Y; Song XN; Yu DJ
    Comb Chem High Throughput Screen; 2019; 22(7):455-469. PubMed ID: 31553288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of microRNA-binding residues in protein using a Laplacian support vector machine based on sequence information.
    Ma X; Guo J; Sun X
    J Bioinform Comput Biol; 2018 Jun; 16(3):1840009. PubMed ID: 29591488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CLIPS-1D: analysis of multiple sequence alignments to deduce for residue-positions a role in catalysis, ligand-binding, or protein structure.
    Janda JO; Busch M; Kück F; Porfenenko M; Merkl R
    BMC Bioinformatics; 2012 Apr; 13():55. PubMed ID: 22480135
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-DNA Binding Residue Prediction via Bagging Strategy and Sequence-Based Cube-Format Feature.
    Hu J; Bai YS; Zheng LL; Jia NX; Yu DJ; Zhang GJ
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3635-3645. PubMed ID: 34714748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MIonSite: Ligand-specific prediction of metal ion-binding sites via enhanced AdaBoost algorithm with protein sequence information.
    Qiao L; Xie D
    Anal Biochem; 2019 Feb; 566():75-88. PubMed ID: 30414728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-based prediction of microRNA-binding residues in proteins using cost-sensitive Laplacian support vector machines.
    Wu JS; Zhou ZH
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(3):752-9. PubMed ID: 24091407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data.
    Xia CQ; Pan X; Shen HB
    Bioinformatics; 2020 May; 36(10):3018-3027. PubMed ID: 32091580
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A web server for analysis, comparison and prediction of protein ligand binding sites.
    Singh H; Srivastava HK; Raghava GP
    Biol Direct; 2016 Mar; 11(1):14. PubMed ID: 27016210
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.