These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 3262310)

  • 1. Effects of oxytocin on cation content and electrophysiology of frog skin epithelium.
    Schoen HF; Kaufman A; Erlij D
    Am J Physiol; 1988 Sep; 255(3 Pt 1):C357-67. PubMed ID: 3262310
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin action on electrophysiological properties of apical and basolateral membranes of frog skin.
    Schoen HF; Erlij D
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C411-7. PubMed ID: 3551625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling of volume and Na+ transport in frog skin epithelium.
    Tang CS; Peterson-Yantorno K; Civan MM
    Biol Cell; 1989; 66(1-2):183-90. PubMed ID: 2804459
    [TBL] [Abstract][Full Text] [Related]  

  • 4. K+ transport and capacitance of the basolateral membrane of the larval frog skin.
    Hillyard SD; Cantiello HF; Van Driessche W
    Am J Physiol; 1997 Dec; 273(6):C1995-2001. PubMed ID: 9435506
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Common channels for water and protons at apical and basolateral cell membranes of frog skin and urinary bladder epithelia. Effects of oxytocin, heavy metals, and inhibitors of H(+)-adenosine triphosphatase.
    Harvey B; Lacoste I; Ehrenfeld J
    J Gen Physiol; 1991 Apr; 97(4):749-76. PubMed ID: 1647438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of an apical cation-selective channel in function of tight epithelia.
    van Driessche W; Erlij D; Simaels J
    Biol Cell; 1989; 66(1-2):37-41. PubMed ID: 2478242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blockage of Na+ currents through poorly selective cation channels in the apical membrane of frog skin and toad urinary bladder.
    Van Driessche W; Desmedt L; Simaels J
    Pflugers Arch; 1991 Apr; 418(3):193-203. PubMed ID: 1649987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactions of TPA and insulin on Na+ transport across frog skin.
    Civan MM; Peterson-Yantorno K; George K; O'Brien TG
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C569-78. PubMed ID: 2646943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current-voltage relations of the apical and basolateral membranes of the frog skin.
    Schoen HF; Erlij D
    J Gen Physiol; 1985 Aug; 86(2):257-87. PubMed ID: 3876406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell K activity in frog skin in the presence and absence of cell current.
    García-Díaz JF; Baxendale LM; Klemperer G; Essig A
    J Membr Biol; 1985; 85(2):143-58. PubMed ID: 3874286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin.
    Tang J; Abramcheck FJ; Van Driessche W; Helman SI
    Am J Physiol; 1985 Nov; 249(5 Pt 1):C421-9. PubMed ID: 2415000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane potentials and intracellular Cl- activity of toad skin epithelium in relation to activation and deactivation of the transepithelial Cl- conductance.
    Willumsen NJ; Larsen EH
    J Membr Biol; 1986; 94(2):173-90. PubMed ID: 3104597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracellular pH controls cell membrane Na+ and K+ conductances and transport in frog skin epithelium.
    Harvey BJ; Thomas SR; Ehrenfeld J
    J Gen Physiol; 1988 Dec; 92(6):767-91. PubMed ID: 3265144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basolateral membrane potential and conductance in frog skin exposed to high serosal potassium.
    Klemperer G; Garcia-Diaz JF; Nagel W; Essig A
    J Membr Biol; 1986; 90(1):89-96. PubMed ID: 3486296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of ouabain and furosemide on basolateral membrane Na efflux of frog skin.
    Cox TC; Helman SI
    Am J Physiol; 1983 Sep; 245(3):F312-21. PubMed ID: 6604462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of amphotericin B and Cl- removal on basolateral membrane K+ conductance in frog corneal epithelium.
    Carrasquer G; Wu XY; Rehm WS; Schwartz M; Dinno MA
    Biochim Biophys Acta; 1991 Nov; 1069(2):181-6. PubMed ID: 1932059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basolateral membrane responses to transport modifiers in the frog skin epithelium.
    Schoen HF; Erlij D
    Pflugers Arch; 1985; 405 Suppl 1():S33-8. PubMed ID: 3911164
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of oxytocin on transepithelial transport of water and Na+ in distinct ventral regions of frog skin (Rana catesbeiana).
    Bevevino LH; Procopio J; Sesso A; Sanioto SM
    J Comp Physiol B; 1996; 166(2):120-30. PubMed ID: 8766909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Forskolin-induced HCO3- current across apical membrane of the frog corneal epithelium.
    Candia OA
    Am J Physiol; 1990 Aug; 259(2 Pt 1):C215-23. PubMed ID: 2166432
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of serosal Cl on transport properties and cation activities in frog skin.
    Klemperer G; Essig A
    J Membr Biol; 1988 Dec; 106(2):107-18. PubMed ID: 3265732
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.