These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 32623124)

  • 1. Enhanced magnetic heating efficiency at acidic pH for magnetic nanoemulsions stabilized with a weak polyelectrolyte.
    Ranoo S; Lahiri BB; Nandy M; Philip J
    J Colloid Interface Sci; 2020 Nov; 579():582-597. PubMed ID: 32623124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications.
    Hervault A; Dunn AE; Lim M; Boyer C; Mott D; Maenosono S; Thanh NT
    Nanoscale; 2016 Jun; 8(24):12152-61. PubMed ID: 26892588
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex pH-Dependent Interactions between Weak Polyelectrolyte Block Copolymer Micelles and Molecular Fluorophores.
    Copp SM; Hamblin RL; Swingle K; Rai D; Urban VS; Ivanov SA; Montaño GA
    Langmuir; 2022 Feb; 38(6):2038-2045. PubMed ID: 35119286
    [TBL] [Abstract][Full Text] [Related]  

  • 4.
    Ognjanović M; Radović M; Mirković M; Prijović Ž; Puerto Morales MD; Čeh M; Vranješ-Đurić S; Antić B
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41109-41117. PubMed ID: 31610125
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Polyelectrolyte/Fe3O4 Nanocapsules for Hyperthermia Applications.
    Cristofolini L; Szczepanowicz K; Orsi D; Rimoldi T; Albertini F; Warszynski P
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25043-50. PubMed ID: 27588711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hysteresis losses and specific absorption rate measurements in magnetic nanoparticles for hyperthermia applications.
    Coïsson M; Barrera G; Celegato F; Martino L; Kane SN; Raghuvanshi S; Vinai F; Tiberto P
    Biochim Biophys Acta Gen Subj; 2017 Jun; 1861(6):1545-1558. PubMed ID: 27986628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.
    Dutz S; Hergt R
    Int J Hyperthermia; 2013 Dec; 29(8):790-800. PubMed ID: 23968194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auto-degradable and biocompatible superparamagnetic iron oxide nanoparticles/polypeptides colloidal polyion complexes with high density of magnetic material.
    Wang B; Sandre O; Wang K; Shi H; Xiong K; Huang YB; Wu T; Yan M; Courtois J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109920. PubMed ID: 31500039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.
    Caizer C
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33375292
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles.
    Kaczmarek K; Hornowski T; Kubovčíková M; Timko M; Koralewski M; Józefczak A
    ACS Appl Mater Interfaces; 2018 Apr; 10(14):11554-11564. PubMed ID: 29560717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peeling back the layers: Investigating the effects of polyelectrolyte layering on surface structure and stability of oil-in-water nanoemulsions.
    Tran E; Mapile AN; Richmond GL
    J Colloid Interface Sci; 2021 Oct; 599():706-716. PubMed ID: 33984763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Superparamagnetic MFe2O 4 (M = Ni, Co, Zn, Mn) nanoparticles: synthesis, characterization, induction heating and cell viability studies for cancer hyperthermia applications.
    Sabale S; Jadhav V; Khot V; Zhu X; Xin M; Chen H
    J Mater Sci Mater Med; 2015 Mar; 26(3):127. PubMed ID: 25690622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Study on the thermal field distribution of cholangiocarcinoma model by magnetic fluid hyperthermia].
    Cai Z; Lu M
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):528-538. PubMed ID: 34180199
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Practical induction heating coil designs for clinical hyperthermia with ferromagnetic implants.
    Stauffer PR; Sneed PK; Hashemi H; Phillips TL
    IEEE Trans Biomed Eng; 1994 Jan; 41(1):17-28. PubMed ID: 8200664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes.
    Ghosh S; Jiang W; McClements JD; Xing B
    Langmuir; 2011 Jul; 27(13):8036-43. PubMed ID: 21650201
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy.
    T S A; Lu YJ; Chen JP
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32707876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An in vivo coil setup for AC magnetic field-mediated magnetic nanoparticle heating experiments.
    Miaskowski A; Balakrishnan P; Subramanian M; Hovorka O
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():3991-3994. PubMed ID: 31946746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis.
    Gupta J; Mohapatra J; Bhargava P; Bahadur D
    Dalton Trans; 2016 Feb; 45(6):2454-61. PubMed ID: 26685824
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative evaluation of magnetic hyperthermia performance and biocompatibility of magnetite and novel Fe-doped hardystonite nanoparticles for potential bone cancer therapy.
    Farzin A; Hassan S; Emadi R; Etesami SA; Ai J
    Mater Sci Eng C Mater Biol Appl; 2019 May; 98():930-938. PubMed ID: 30813100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.