BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 32623177)

  • 1. Copper nanowires as nanofertilizers for alfalfa plants: Understanding nano-bio systems interactions from microbial genomics, plant molecular responses and spectroscopic studies.
    Cota-Ruiz K; Ye Y; Valdes C; Deng C; Wang Y; Hernández-Viezcas JA; Duarte-Gardea M; Gardea-Torresdey JL
    Sci Total Environ; 2020 Nov; 742():140572. PubMed ID: 32623177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity of copper hydroxide nanoparticles, bulk copper hydroxide, and ionic copper to alfalfa plants: A spectroscopic and gene expression study.
    Cota-Ruiz K; Hernández-Viezcas JA; Varela-Ramírez A; Valdés C; Núñez-Gastélum JA; Martínez-Martínez A; Delgado-Rios M; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Pollut; 2018 Dec; 243(Pt A):703-712. PubMed ID: 30228067
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement of nutrient elements and allicin content in green onion (Allium fistulosum) plants exposed to CuO nanoparticles.
    Wang Y; Deng C; Cota-Ruiz K; Peralta-Videa JR; Sun Y; Rawat S; Tan W; Reyes A; Hernandez-Viezcas JA; Niu G; Li C; Gardea-Torresdey JL
    Sci Total Environ; 2020 Jul; 725():138387. PubMed ID: 32298898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa).
    Hong J; Rico CM; Zhao L; Adeleye AS; Keller AA; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Sci Process Impacts; 2015 Jan; 17(1):177-85. PubMed ID: 25474419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of manufactured nano-copper on copper uptake, bioaccumulation and enzyme activities in cowpea grown on soil substrate.
    Ogunkunle CO; Jimoh MA; Asogwa NT; Viswanathan K; Vishwakarma V; Fatoba PO
    Ecotoxicol Environ Saf; 2018 Jul; 155():86-93. PubMed ID: 29510313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Addition-omission of zinc, copper, and boron nano and bulk oxide particles demonstrate element and size -specific response of soybean to micronutrients exposure.
    Dimkpa CO; Singh U; Bindraban PS; Adisa IO; Elmer WH; Gardea-Torresdey JL; White JC
    Sci Total Environ; 2019 May; 665():606-616. PubMed ID: 30776632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Copper nanoparticles/compounds impact agronomic and physiological parameters in cilantro (Coriandrum sativum).
    Zuverza-Mena N; Medina-Velo IA; Barrios AC; Tan W; Peralta-Videa JR; Gardea-Torresdey JL
    Environ Sci Process Impacts; 2015 Oct; 17(10):1783-93. PubMed ID: 26311125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological and biochemical effects of nanoparticulate copper, bulk copper, copper chloride, and kinetin in kidney bean (Phaseolus vulgaris) plants.
    Apodaca SA; Tan W; Dominguez OE; Hernandez-Viezcas JA; Peralta-Videa JR; Gardea-Torresdey JL
    Sci Total Environ; 2017 Dec; 599-600():2085-2094. PubMed ID: 28558431
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo).
    Tamez C; Hernandez-Molina M; Hernandez-Viezcas JA; Gardea-Torresdey JL
    Sci Total Environ; 2019 May; 665():100-106. PubMed ID: 30772537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bok choy (Brassica rapa) grown in copper oxide nanoparticles-amended soils exhibits toxicity in a phenotype-dependent manner: Translocation, biodistribution and nutritional disturbance.
    Deng C; Wang Y; Cota-Ruiz K; Reyes A; Sun Y; Peralta-Videa J; Hernandez-Viezcas JA; Turley RS; Niu G; Li C; Gardea-Torresdey J
    J Hazard Mater; 2020 Nov; 398():122978. PubMed ID: 32504955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impact of co-inoculation with plant-growth-promoting rhizobacteria and rhizobium on the biochemical responses of alfalfa-soil system in copper contaminated soil.
    Ju W; Liu L; Fang L; Cui Y; Duan C; Wu H
    Ecotoxicol Environ Saf; 2019 Jan; 167():218-226. PubMed ID: 30342354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Citric acid- and Tween(®) 80-assisted phytoremediation of a co-contaminated soil: alfalfa (Medicago sativa L.) performance and remediation potential.
    Agnello AC; Huguenot D; van Hullebusch ED; Esposito G
    Environ Sci Pollut Res Int; 2016 May; 23(9):9215-26. PubMed ID: 26838038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (1)H NMR and GC-MS Based Metabolomics Reveal Defense and Detoxification Mechanism of Cucumber Plant under Nano-Cu Stress.
    Zhao L; Huang Y; Hu J; Zhou H; Adeleye AS; Keller AA
    Environ Sci Technol; 2016 Feb; 50(4):2000-10. PubMed ID: 26751164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term assessment of nano and bulk copper compound exposure in sugarcane (Saccharum officinarum).
    Tamez C; Molina-Hernandez M; Medina-Velo IA; Cota-Ruiz K; Hernandez-Viezcas JA; Gardea-Torresdey J
    Sci Total Environ; 2020 May; 718():137318. PubMed ID: 32088484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils.
    Ju W; Liu L; Jin X; Duan C; Cui Y; Wang J; Ma D; Zhao W; Wang Y; Fang L
    Chemosphere; 2020 Sep; 254():126724. PubMed ID: 32334248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rhizobial symbiosis effect on the growth, metal uptake, and antioxidant responses of Medicago lupulina under copper stress.
    Kong Z; Mohamad OA; Deng Z; Liu X; Glick BR; Wei G
    Environ Sci Pollut Res Int; 2015 Aug; 22(16):12479-89. PubMed ID: 25903186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Methane alleviates copper-induced seed germination inhibition and oxidative stress in Medicago sativa.
    Samma MK; Zhou H; Cui W; Zhu K; Zhang J; Shen W
    Biometals; 2017 Feb; 30(1):97-111. PubMed ID: 28091954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous jasmonic acid decreased Cu accumulation by alfalfa and improved its photosynthetic pigments and antioxidant system.
    Dai H; Wei S; Pogrzeba M; Rusinowski S; Krzyżak J; Jia G
    Ecotoxicol Environ Saf; 2020 Mar; 190():110176. PubMed ID: 31927358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoscale copper in the soil-plant system - toxicity and underlying potential mechanisms.
    Anjum NA; Adam V; Kizek R; Duarte AC; Pereira E; Iqbal M; Lukatkin AS; Ahmad I
    Environ Res; 2015 Apr; 138():306-25. PubMed ID: 25749126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhizobium inoculation enhances copper tolerance by affecting copper uptake and regulating the ascorbate-glutathione cycle and phytochelatin biosynthesis-related gene expression in Medicago sativa seedlings.
    Chen J; Liu YQ; Yan XW; Wei GH; Zhang JH; Fang LC
    Ecotoxicol Environ Saf; 2018 Oct; 162():312-323. PubMed ID: 30005404
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.