These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32623202)

  • 41. A porous g-C
    Wang J; Gao B; Dou M; Huang X; Ma Z
    Environ Res; 2020 May; 184():109339. PubMed ID: 32151838
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Modified 2D-2D ZnIn
    Jiang R; Wu D; Lu G; Yan Z; Liu J
    Chemosphere; 2019 Jul; 227():82-92. PubMed ID: 30986605
    [TBL] [Abstract][Full Text] [Related]  

  • 43. NiS and MoS
    Lu X; Wang Y; Zhang X; Xu G; Wang D; Lv J; Zheng Z; Wu Y
    J Hazard Mater; 2018 Jan; 341():10-19. PubMed ID: 28763632
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Facile and Cost-Efficient Synthesis of Quasi-0D/2D ZnO/MoS
    Islam SE; Hang DR; Chen CH; Sharma KH
    Chemistry; 2018 Jul; 24(37):9305-9315. PubMed ID: 29726635
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visible-light-driven photocatalytic removal of antibiotics by newly designed C
    Wang X; Wang A; Ma J
    J Hazard Mater; 2017 Aug; 336():81-92. PubMed ID: 28475915
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Solar photocatalytic degradation of ciprofloxacin using biochar supported zinc oxide- tungsten oxide photocatalyst.
    Verma A; Priyadarshini U; Remya N
    Environ Sci Pollut Res Int; 2024 May; ():. PubMed ID: 38819509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solar-driven hybrid photo-Fenton degradation of persistent antibiotic ciprofloxacin by zinc ferrite-titania heterostructures: degradation pathway, intermediates, and toxicity analysis.
    John S; Rathinavelu S; Mary SMS; Nambi IM; Babu SM; Thomas T; Singh S
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):39605-39617. PubMed ID: 36598720
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tetracycline removal via adsorption and metal-free catalysis with 3D macroscopic N-doped porous carbon nanosheets: Non-radical mechanism and degradation pathway.
    Shen Y; Zhu K; He D; Huang J; He H; Lei L; Chen W
    J Environ Sci (China); 2022 Jan; 111():351-366. PubMed ID: 34949364
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.
    Salma A; Thoröe-Boveleth S; Schmidt TC; Tuerk J
    J Hazard Mater; 2016 Aug; 313():49-59. PubMed ID: 27054664
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enhanced catalytic degradation of ciprofloxacin with FeS
    Diao ZH; Xu XR; Jiang D; Li G; Liu JJ; Kong LJ; Zuo LZ
    J Hazard Mater; 2017 Apr; 327():108-115. PubMed ID: 28049066
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Construction and application of BiOCl/Cu-doped Bi
    Du F; Lai Z; Tang H; Wang H; Zhao C
    Chemosphere; 2022 Jan; 287(Pt 4):132391. PubMed ID: 34597627
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Metal Oxide Nanostructures (MONs) as Photocatalysts for Ciprofloxacin Degradation.
    Pascariu P; Gherasim C; Airinei A
    Int J Mol Sci; 2023 May; 24(11):. PubMed ID: 37298517
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Complete removal of endocrine disrupting compound and toxic dye by visible light active porous g-C
    Aanchal ; Barman S; Basu S
    Chemosphere; 2020 Feb; 241():124981. PubMed ID: 31606579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plasmonic Ag decorated graphitic carbon nitride sheets with enhanced visible-light response for photocatalytic water disinfection and organic pollutant removal.
    Wei F; Li J; Dong C; Bi Y; Han X
    Chemosphere; 2020 Mar; 242():125201. PubMed ID: 31677514
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In situ growing Bi
    Li J; Yin Y; Liu E; Ma Y; Wan J; Fan J; Hu X
    J Hazard Mater; 2017 Jan; 321():183-192. PubMed ID: 27619964
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Graphene modified anatase/titanate nanosheets with enhanced photocatalytic activity for efficient degradation of sulfamethazine under simulated solar light.
    Liu X; Ji H; Li S; Liu W
    Chemosphere; 2019 Oct; 233():198-206. PubMed ID: 31173957
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Persulfate enhanced photocatalytic degradation of bisphenol A by g-C
    Liu B; Qiao M; Wang Y; Wang L; Gong Y; Guo T; Zhao X
    Chemosphere; 2017 Dec; 189():115-122. PubMed ID: 28934651
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Degradation and removal of Ceftriaxone sodium in aquatic environment with Bi
    Zhao Y; Liang X; Wang Y; Shi H; Liu E; Fan J; Hu X
    J Colloid Interface Sci; 2018 Aug; 523():7-17. PubMed ID: 29605741
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Green preparation of porous hierarchical TiO
    Wang Q; Fang X; Hao P; Chi W; Huang F; Shi X; Cui G; Liu Y; Tang B
    Chem Commun (Camb); 2021 Dec; 57(96):13024-13027. PubMed ID: 34807209
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synergistic adsorption-photocatalytic degradation of different antibiotics in seawater by a porous g-C
    Yu Y; Chen D; Xu W; Fang J; Sun J; Liu Z; Chen Y; Liang Y; Fang Z
    J Hazard Mater; 2021 Aug; 416():126183. PubMed ID: 34492954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.