BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 32623271)

  • 1. Automated mineralogy for quantification and partitioning of metal(loid)s in particulates from mining/smelting-polluted soils.
    Tuhý M; Hrstka T; Ettler V
    Environ Pollut; 2020 Nov; 266(Pt 1):115118. PubMed ID: 32623271
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geochemical position of Pb, Zn and Cd in soils near the Olkusz mine/smelter, South Poland: effects of land use, type of contamination and distance from pollution source.
    Chrastný V; Vaněk A; Teper L; Cabala J; Procházka J; Pechar L; Drahota P; Penížek V; Komárek M; Novák M
    Environ Monit Assess; 2012 Apr; 184(4):2517-36. PubMed ID: 21674226
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oral bioaccessibility of metal(loid)s in dust materials from mining areas of northern Namibia.
    Ettler V; Cihlová M; Jarošíková A; Mihaljevič M; Drahota P; Kříbek B; Vaněk A; Penížek V; Sracek O; Klementová M; Engel Z; Kamona F; Mapani B
    Environ Int; 2019 Mar; 124():205-215. PubMed ID: 30654327
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead isotopes and heavy minerals analyzed as tools to understand the distribution of lead and other potentially toxic elements in soils contaminated by Cu smelting (Legnica, Poland).
    Tyszka R; Pietranik A; Kierczak J; Ettler V; Mihaljevič M; Medyńska-Juraszek A
    Environ Sci Pollut Res Int; 2016 Dec; 23(23):24350-24363. PubMed ID: 27655618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Composition and fate of mine- and smelter-derived particles in soils of humid subtropical and hot semi-arid areas.
    Ettler V; Johan Z; Kříbek B; Veselovský F; Mihaljevič M; Vaněk A; Penížek V; Majer V; Sracek O; Mapani B; Kamona F; Nyambe I
    Sci Total Environ; 2016 Sep; 563-564():329-39. PubMed ID: 27139305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal(loid)s remobilization and mineralogical transformations in smelter-polluted savanna soils under simulated wildfire conditions.
    Tuhý M; Ettler V; Rohovec J; Matoušková Š; Mihaljevič M; Kříbek B; Mapani B
    J Environ Manage; 2021 Sep; 293():112899. PubMed ID: 34089961
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil.
    Lopes G; Costa ET; Penido ES; Sparks DL; Guilherme LR
    Environ Sci Pollut Res Int; 2015 Sep; 22(17):13442-52. PubMed ID: 25940493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia.
    Hiller E; Petrák M; Tóth R; Lalinská-Voleková B; Jurkovič L; Kučerová G; Radková A; Sottník P; Vozár J
    Environ Sci Pollut Res Int; 2013 Nov; 20(11):7627-42. PubMed ID: 23436124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal-spatial variation and partitioning of dissolved and particulate heavy metal(loid)s in a river affected by mining activities in Southern China.
    Wang J; Liu G; Wu H; Zhang T; Liu X; Li W
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9828-9839. PubMed ID: 29372524
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Risk Assessment and Source Identification of Toxic Metals in the Agricultural Soil around a Pb/Zn Mining and Smelting Area in Southwest China.
    Wu J; Long J; Liu L; Li J; Liao H; Zhang M; Zhao C; Wu Q
    Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30149620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soils and spoils: mineralogy and geochemistry of mining and processing wastes from lead and zinc mining at the Gratz Mine, Owen County, Kentucky.
    Hower JC; Fiket Ž; Henke KR; Hiett JK; Thorson JS; Kharel M; Dai S; Silva LFO; Oliveira MLS
    J Soils Sediments; 2022 Jun; 22(6):1773-1786. PubMed ID: 37475891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial distribution and risk assessment of heavy metals inside and outside a typical lead-zinc mine in southeastern China.
    Zhu X; Cao L; Liang Y
    Environ Sci Pollut Res Int; 2019 Sep; 26(25):26265-26275. PubMed ID: 31286370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Change in metals and arsenic distribution in soil and their bioavailability beside old tailing ponds.
    Gabarrón M; Faz A; Martínez-Martínez S; Acosta JA
    J Environ Manage; 2018 Apr; 212():292-300. PubMed ID: 29448183
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The release analysis of As and Cr metals in lead-zinc smelting slag: Mineralogical analysis, bioavailability and leachability analysis.
    Ma Y; Li C; Yan J; Yu H; Kan H; Yu W; Zhou X; Meng Q; Dong P
    Environ Res; 2023 Jul; 229():115751. PubMed ID: 36966997
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrated approach to assess the environmental impact of mining activities: estimation of the spatial distribution of soil contamination (Panasqueira mining area, Central Portugal).
    Candeias C; Ávila PF; Ferreira da Silva E; Teixeira JP
    Environ Monit Assess; 2015 Mar; 187(3):135. PubMed ID: 25702148
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insights on the effect of non-ferrous metal mining and smelting activities on microbial activity characteristics and bacterial community structure.
    Li H; Yao J; Min N; Sunahara G; Duran R
    J Hazard Mater; 2023 Jul; 453():131301. PubMed ID: 37043852
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.
    Liu G; Wang J; Zhang E; Hou J; Liu X
    Environ Sci Pollut Res Int; 2016 May; 23(9):8709-20. PubMed ID: 26801928
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Geochemical fractionation and potential release behaviour of heavy metals in lead‒zinc smelting soils.
    Luo X; Xiang C; Wu C; Gao W; Ke W; Zeng J; Li W; Xue S
    J Environ Sci (China); 2024 May; 139():1-11. PubMed ID: 38105037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Source apportionment of heavy metal and their health risks in soil-dustfall-plant system nearby a typical non-ferrous metal mining area of Tongling, Eastern China.
    Wang J; Su J; Li Z; Liu B; Cheng G; Jiang Y; Li Y; Zhou S; Yuan W
    Environ Pollut; 2019 Nov; 254(Pt B):113089. PubMed ID: 31476672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A typical case study from smelter-contaminated soil: new insights into the environmental availability of heavy metals using an integrated mineralogy characterization.
    Xu DM; Fu RB
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):57296-57305. PubMed ID: 35352226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.