These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32623274)

  • 1. Local rotation invariance in 3D CNNs.
    Andrearczyk V; Fageot J; Oreiller V; Montet X; Depeursinge A
    Med Image Anal; 2020 Oct; 65():101756. PubMed ID: 32623274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dense Steerable Filter CNNs for Exploiting Rotational Symmetry in Histology Images.
    Graham S; Epstein D; Rajpoot N
    IEEE Trans Med Imaging; 2020 Dec; 39(12):4124-4136. PubMed ID: 32746153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roto-translation equivariant convolutional networks: Application to histopathology image analysis.
    Lafarge MW; Bekkers EJ; Pluim JPW; Duits R; Veta M
    Med Image Anal; 2021 Feb; 68():101849. PubMed ID: 33197715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A rotation meanout network with invariance for dermoscopy image classification and retrieval.
    Zhang Y; Xie F; Song X; Zhou H; Yang Y; Zhang H; Liu J
    Comput Biol Med; 2022 Dec; 151(Pt A):106272. PubMed ID: 36368111
    [TBL] [Abstract][Full Text] [Related]  

  • 5. OBELISK-Net: Fewer layers to solve 3D multi-organ segmentation with sparse deformable convolutions.
    Heinrich MP; Oktay O; Bouteldja N
    Med Image Anal; 2019 May; 54():1-9. PubMed ID: 30807894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fusing learned representations from Riesz Filters and Deep CNN for lung tissue classification.
    Joyseeree R; Otálora S; Müller H; Depeursinge A
    Med Image Anal; 2019 Aug; 56():172-183. PubMed ID: 31229761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pulmonary nodule detection in CT scans with equivariant CNNs.
    Winkels M; Cohen TS
    Med Image Anal; 2019 Jul; 55():15-26. PubMed ID: 31003034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SACNN: Self-Attention Convolutional Neural Network for Low-Dose CT Denoising With Self-Supervised Perceptual Loss Network.
    Li M; Hsu W; Xie X; Cong J; Gao W
    IEEE Trans Med Imaging; 2020 Jul; 39(7):2289-2301. PubMed ID: 31985412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fine-Tuning CNN Image Retrieval with No Human Annotation.
    Radenovic F; Tolias G; Chum O
    IEEE Trans Pattern Anal Mach Intell; 2019 Jul; 41(7):1655-1668. PubMed ID: 29994246
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing rotationally invariant neural networks from PDEs and variational methods.
    Alt T; Schrader K; Weickert J; Peter P; Augustin M
    Res Math Sci; 2022; 9(3):52. PubMed ID: 35941960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning approaches using 2D and 3D convolutional neural networks for generating male pelvic synthetic computed tomography from magnetic resonance imaging.
    Fu J; Yang Y; Singhrao K; Ruan D; Chu FI; Low DA; Lewis JH
    Med Phys; 2019 Sep; 46(9):3788-3798. PubMed ID: 31220353
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A failure to learn object shape geometry: Implications for convolutional neural networks as plausible models of biological vision.
    Heinke D; Wachman P; van Zoest W; Leek EC
    Vision Res; 2021 Dec; 189():81-92. PubMed ID: 34634753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Convolutional Neural Networks-Based Approach for Texture Directionality Detection.
    Kociołek M; Kozłowski M; Cardone A
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An end-to-end-trainable iterative network architecture for accelerated radial multi-coil 2D cine MR image reconstruction.
    Kofler A; Haltmeier M; Schaeffter T; Kolbitsch C
    Med Phys; 2021 May; 48(5):2412-2425. PubMed ID: 33651398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SIFT-CNN: When Convolutional Neural Networks Meet Dense SIFT Descriptors for Image and Sequence Classification.
    Tsourounis D; Kastaniotis D; Theoharatos C; Kazantzidis A; Economou G
    J Imaging; 2022 Sep; 8(10):. PubMed ID: 36286349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond CNNs: Exploiting Further Inherent Symmetries in Medical Image Segmentation.
    Pang S; Du A; Orgun MA; Wang Y; Sheng QZ; Wang S; Huang X; Yu Z
    IEEE Trans Cybern; 2023 Nov; 53(11):6776-6787. PubMed ID: 36044511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computer-aided detection and visualization of pulmonary embolism using a novel, compact, and discriminative image representation.
    Tajbakhsh N; Shin JY; Gotway MB; Liang J
    Med Image Anal; 2019 Dec; 58():101541. PubMed ID: 31416007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unsupervised Learning of Local Equivariant Descriptors for Point Clouds.
    Marcon M; Spezialetti R; Salti S; Silva L; Stefano LD
    IEEE Trans Pattern Anal Mach Intell; 2022 Dec; 44(12):9687-9702. PubMed ID: 34752387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rotation equivariant and invariant neural networks for microscopy image analysis.
    Chidester B; Zhou T; Do MN; Ma J
    Bioinformatics; 2019 Jul; 35(14):i530-i537. PubMed ID: 31510662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.