These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 32623277)

  • 1. Deep learning with noisy labels: Exploring techniques and remedies in medical image analysis.
    Karimi D; Dou H; Warfield SK; Gholipour A
    Med Image Anal; 2020 Oct; 65():101759. PubMed ID: 32623277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suppressing label noise in medical image classification using mixup attention and self-supervised learning.
    Gao M; Jiang H; Hu Y; Ren Q; Xie Z; Liu J
    Phys Med Biol; 2024 May; 69(10):. PubMed ID: 38636495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey of label-noise deep learning for medical image analysis.
    Shi J; Zhang K; Guo C; Yang Y; Xu Y; Wu J
    Med Image Anal; 2024 Jul; 95():103166. PubMed ID: 38613918
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-Correcting: Noise-Tolerant Medical Image Classification via Mutual Label Correction.
    Liu J; Li R; Sun C
    IEEE Trans Med Imaging; 2021 Dec; 40(12):3580-3592. PubMed ID: 34152981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robust Medical Image Classification From Noisy Labeled Data With Global and Local Representation Guided Co-Training.
    Xue C; Yu L; Chen P; Dou Q; Heng PA
    IEEE Trans Med Imaging; 2022 Jun; 41(6):1371-1382. PubMed ID: 34982680
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust co-teaching learning with consistency-based noisy label correction for medical image classification.
    Zhu M; Zhang L; Wang L; Li D; Zhang J; Yi Z
    Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):675-683. PubMed ID: 36437387
    [TBL] [Abstract][Full Text] [Related]  

  • 7. S-CUDA: Self-cleansing unsupervised domain adaptation for medical image segmentation.
    Liu L; Zhang Z; Li S; Ma K; Zheng Y
    Med Image Anal; 2021 Dec; 74():102214. PubMed ID: 34464837
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep learning with noisy labels in medical prediction problems: a scoping review.
    Wei Y; Deng Y; Sun C; Lin M; Jiang H; Peng Y
    J Am Med Inform Assoc; 2024 Jun; 31(7):1596-1607. PubMed ID: 38814164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation.
    Wang G; Luo X; Gu R; Yang S; Qu Y; Zhai S; Zhao Q; Li K; Zhang S
    Comput Methods Programs Biomed; 2023 Apr; 231():107398. PubMed ID: 36773591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the objectivity, reliability, and validity of deep learning enabled bioimage analyses.
    Segebarth D; Griebel M; Stein N; von Collenberg CR; Martin C; Fiedler D; Comeras LB; Sah A; Schoeffler V; Lüffe T; Dürr A; Gupta R; Sasi M; Lillesaar C; Lange MD; Tasan RO; Singewald N; Pape HC; Flath CM; Blum R
    Elife; 2020 Oct; 9():. PubMed ID: 33074102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robustness study of noisy annotation in deep learning based medical image segmentation.
    Yu S; Chen M; Zhang E; Wu J; Yu H; Yang Z; Ma L; Gu X; Lu W
    Phys Med Biol; 2020 Aug; 65(17):175007. PubMed ID: 32503027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-supervised pre-training with contrastive and masked autoencoder methods for dealing with small datasets in deep learning for medical imaging.
    Wolf D; Payer T; Lisson CS; Lisson CG; Beer M; Götz M; Ropinski T
    Sci Rep; 2023 Nov; 13(1):20260. PubMed ID: 37985685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving Medical Image Classification in Noisy Labels Using only Self-supervised Pretraining.
    Khanal B; Bhattarai B; Khanal B; Linte CA
    Data Eng Med Imaging (2023); 2023 Oct; 14314():78-90. PubMed ID: 39144367
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances and clinical applications of deep learning in medical image analysis.
    Chen X; Wang X; Zhang K; Fung KM; Thai TC; Moore K; Mannel RS; Liu H; Zheng B; Qiu Y
    Med Image Anal; 2022 Jul; 79():102444. PubMed ID: 35472844
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Label noise and self-learning label correction in cardiac abnormalities classification.
    Gallego Vázquez C; Breuss A; Gnarra O; Portmann J; Madaffari A; Da Poian G
    Physiol Meas; 2022 Sep; 43(9):. PubMed ID: 35970176
    [No Abstract]   [Full Text] [Related]  

  • 17. Self-relabeling for noise-tolerant retina vessel segmentation through label reliability estimation.
    Li J; Li R; Han R; Wang S
    BMC Med Imaging; 2022 Jan; 22(1):8. PubMed ID: 35022020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sample self-selection using dual teacher networks for pathological image classification with noisy labels.
    Han G; Guo W; Zhang H; Jin J; Gan X; Zhao X
    Comput Biol Med; 2024 May; 174():108489. PubMed ID: 38640633
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian statistics-guided label refurbishment mechanism: Mitigating label noise in medical image classification.
    Gao M; Feng X; Geng M; Jiang Z; Zhu L; Meng X; Zhou C; Ren Q; Lu Y
    Med Phys; 2022 Sep; 49(9):5899-5913. PubMed ID: 35678232
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving multiple sclerosis lesion segmentation across clinical sites: A federated learning approach with noise-resilient training.
    Bai L; Wang D; Wang H; Barnett M; Cabezas M; Cai W; Calamante F; Kyle K; Liu D; Ly L; Nguyen A; Shieh CC; Sullivan R; Zhan G; Ouyang W; Wang C
    Artif Intell Med; 2024 Jun; 152():102872. PubMed ID: 38701636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.