These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 32623344)

  • 1. Synthesis of Au nanorods via autocatalytic growth of Au seeds formed by sonochemical reduction of Au(I): Relation between formation rate and characteristic of Au nanorods.
    Okitsu K; Semboshi S
    Ultrason Sonochem; 2020 Dec; 69():105229. PubMed ID: 32623344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot synthesis of gold nanorods via autocatalytic growth of sonochemically formed gold seeds: the effect of irradiation time on the formation of seeds and nanorods.
    Okitsu K; Nunota Y
    Ultrason Sonochem; 2014 Nov; 21(6):1928-32. PubMed ID: 24703822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nucleation and growth of zinc oxide nanorods directly on metal wire by sonochemical method.
    Rayathulhan R; Sodipo BK; Aziz AA
    Ultrason Sonochem; 2017 Mar; 35(Pt A):270-275. PubMed ID: 27756524
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of bromide ions in seeding growth of Au nanorods.
    Garg N; Scholl C; Mohanty A; Jin R
    Langmuir; 2010 Jun; 26(12):10271-6. PubMed ID: 20394386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient seed-mediated method for the large-scale synthesis of Au nanorods.
    Ahmed W; Bhatti AS; van Ruitenbeek JM
    J Nanopart Res; 2017; 19(3):115. PubMed ID: 28367069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.
    Okitsu K; Sharyo K; Nishimura R
    Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the Seed-Mediated Growth of Gold Nanorods through a Fractional Factorial Design of Experiments.
    Burrows ND; Harvey S; Idesis FA; Murphy CJ
    Langmuir; 2017 Feb; 33(8):1891-1907. PubMed ID: 27983861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid.
    Zhou YT; He W; Wamer WG; Hu X; Wu X; Lo YM; Yin JJ
    Nanoscale; 2013 Feb; 5(4):1583-91. PubMed ID: 23329011
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gold nanorod-seeded synthesis of Au@Ag/Au nanospheres with broad and intense near-infrared absorption for photothermal cancer therapy.
    Ye X; Shi H; He X; Wang K; Li D; Qiu P
    J Mater Chem B; 2014 Jun; 2(23):3667-3673. PubMed ID: 32263803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The unusual effect of AgNO3 on the growth of Au nanostructures and their catalytic performance.
    Li X; Yang Y; Zhou G; Han S; Wang W; Zhang L; Chen W; Zou C; Huang S
    Nanoscale; 2013 Jun; 5(11):4976-85. PubMed ID: 23636467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Mechanism for Symmetry Breaking and Shape Control in Single-Crystal Gold Nanorods.
    Walsh MJ; Tong W; Katz-Boon H; Mulvaney P; Etheridge J; Funston AM
    Acc Chem Res; 2017 Dec; 50(12):2925-2935. PubMed ID: 29144733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iodide-Switched Deposition for the Synthesis of Segmented Pd-Au-Pd Nanorods: Crystal Facet Matters.
    Liu S; Niu W; Firdoz S; Zhang W
    Langmuir; 2017 Oct; 33(43):12254-12259. PubMed ID: 28985674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct hydrothermal synthesis of amine-functionalized cubic hematite (C-Fe
    Jung WS; Park SH; Kadam AN; Kim H; Lee SW
    Dalton Trans; 2020 Mar; 49(9):2924-2932. PubMed ID: 32068752
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of Si Nanorods and Discrete Nanophases by Axial Diffusion of Si from Substrate into Au and AuPt Nanoalloy Nanorods.
    Berger N; Laghrissi A; Tay YY; Sritharan T; Fiutowski J; Rubahn HG; Es-Souni M
    Nanomaterials (Basel); 2019 Dec; 10(1):. PubMed ID: 31892203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap.
    Zhu J; Zhang S; Weng GJ; Li JJ; Zhao JW
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 236():118343. PubMed ID: 32302959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photochemical synthesis of ZnO@Au nanorods as an advanced reusable SERS substrate for ultrasensitive detection of light-resistant organic pollutant in wastewater.
    Xu L; Zhang H; Tian Y; Jiao A; Chen F; Chen M
    Talanta; 2019 Mar; 194():680-688. PubMed ID: 30609590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on Au Nanorods in Ag Ion-Assisted Seed-Mediated Growth.
    Li M; Lu S; Liu D; Yang Y; Yang P
    J Nanosci Nanotechnol; 2017 Feb; 17(2):1225-232. PubMed ID: 29683296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoinduced self-assembly of Au-Ag-Hg trimetallic nanoparticles during their synthesis from gold seeds in glycine solution.
    Huang YF; Huang KM; Chang HT
    J Nanosci Nanotechnol; 2007 Sep; 7(9):3172-9. PubMed ID: 18019145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Component conversion from pure Au nanorods to multiblock Ag-Au-Ag nanorods assisted by Pt nanoframe templates.
    Lee S; Jang HJ; Jang HY; Kim SK; Park S
    Nanoscale; 2016 Jul; 8(26):12874-8. PubMed ID: 27315144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of trace Ag in the synthesis of Au nanorods.
    Moreau LM; Jones MR; Roth EW; Wu J; Kewalramani S; O'Brien MN; Chen BR; Mirkin CA; Bedzyk MJ
    Nanoscale; 2019 Jun; 11(24):11744-11754. PubMed ID: 31183478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.