These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 32623749)

  • 21. Embryonic reactivation of FLOWERING LOCUS C by ABSCISIC ACID-INSENSITIVE 3 establishes the vernalization requirement in each Arabidopsis generation.
    Xu G; Tao Z; He Y
    Plant Cell; 2022 May; 34(6):2205-2221. PubMed ID: 35234936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of vernalization and of duplicated FLOWERING LOCUS C in the perennial Arabidopsis lyrata.
    Kemi U; Niittyvuopio A; Toivainen T; Pasanen A; Quilot-Turion B; Holm K; Lagercrantz U; Savolainen O; Kuittinen H
    New Phytol; 2013 Jan; 197(1):323-335. PubMed ID: 23106477
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Vernalization: a model for investigating epigenetics and eukaryotic gene regulation in plants.
    Schmitz RJ; Amasino RM
    Biochim Biophys Acta; 2007; 1769(5-6):269-75. PubMed ID: 17383745
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular control of seasonal flowering in rice, arabidopsis and temperate cereals.
    Shrestha R; Gómez-Ariza J; Brambilla V; Fornara F
    Ann Bot; 2014 Nov; 114(7):1445-58. PubMed ID: 24651369
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosstalk between cold response and flowering in Arabidopsis is mediated through the flowering-time gene SOC1 and its upstream negative regulator FLC.
    Seo E; Lee H; Jeon J; Park H; Kim J; Noh YS; Lee I
    Plant Cell; 2009 Oct; 21(10):3185-97. PubMed ID: 19825833
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Total FLC transcript dynamics from divergent paralogue expression explains flowering diversity in Brassica napus.
    Calderwood A; Lloyd A; Hepworth J; Tudor EH; Jones DM; Woodhouse S; Bilham L; Chinoy C; Williams K; Corke F; Doonan JH; Ostergaard L; Irwin JA; Wells R; Morris RJ
    New Phytol; 2021 Mar; 229(6):3534-3548. PubMed ID: 33289112
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Differential regulation of FLOWERING LOCUS C expression by vernalization in cabbage and Arabidopsis.
    Lin SI; Wang JG; Poon SY; Su CL; Wang SS; Chiou TJ
    Plant Physiol; 2005 Mar; 137(3):1037-48. PubMed ID: 15734903
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Make hay when the sun shines: the role of MADS-box genes in temperature-dependant seasonal flowering responses.
    Hemming MN; Trevaskis B
    Plant Sci; 2011 Mar; 180(3):447-53. PubMed ID: 21421391
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon.
    Ream TS; Woods DP; Schwartz CJ; Sanabria CP; Mahoy JA; Walters EM; Kaeppler HF; Amasino RM
    Plant Physiol; 2014 Feb; 164(2):694-709. PubMed ID: 24357601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vernalization - a cold-induced epigenetic switch.
    Song J; Angel A; Howard M; Dean C
    J Cell Sci; 2012 Aug; 125(Pt 16):3723-31. PubMed ID: 22935652
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control.
    Levy YY; Mesnage S; Mylne JS; Gendall AR; Dean C
    Science; 2002 Jul; 297(5579):243-6. PubMed ID: 12114624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression.
    Sheldon CC; Conn AB; Dennis ES; Peacock WJ
    Plant Cell; 2002 Oct; 14(10):2527-37. PubMed ID: 12368502
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response.
    Shindo C; Lister C; Crevillen P; Nordborg M; Dean C
    Genes Dev; 2006 Nov; 20(22):3079-83. PubMed ID: 17114581
    [TBL] [Abstract][Full Text] [Related]  

  • 34. FLOWERING LOCUS C in monocots and the tandem origin of angiosperm-specific MADS-box genes.
    Ruelens P; de Maagd RA; Proost S; Theißen G; Geuten K; Kaufmann K
    Nat Commun; 2013; 4():2280. PubMed ID: 23955420
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A single amino acid change in the enhancer of zeste ortholog CURLY LEAF results in vernalization-independent, rapid flowering in Arabidopsis.
    Doyle MR; Amasino RM
    Plant Physiol; 2009 Nov; 151(3):1688-97. PubMed ID: 19755537
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The PHD finger protein VRN5 functions in the epigenetic silencing of Arabidopsis FLC.
    Greb T; Mylne JS; Crevillen P; Geraldo N; An H; Gendall AR; Dean C
    Curr Biol; 2007 Jan; 17(1):73-8. PubMed ID: 17174094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Wheat TILLING mutants show that the vernalization gene VRN1 down-regulates the flowering repressor VRN2 in leaves but is not essential for flowering.
    Chen A; Dubcovsky J
    PLoS Genet; 2012; 8(12):e1003134. PubMed ID: 23271982
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The molecular basis of vernalization-induced flowering in cereals.
    Trevaskis B; Hemming MN; Dennis ES; Peacock WJ
    Trends Plant Sci; 2007 Aug; 12(8):352-7. PubMed ID: 17629542
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distinct responses to autumn and spring temperatures by the key flowering-time regulator FLOWERING LOCUS C.
    Nishio H; Kudoh H
    Curr Opin Genet Dev; 2023 Feb; 78():102016. PubMed ID: 36549195
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanisms of gene repression by vernalization in Arabidopsis.
    Sheldon CC; Finnegan EJ; Peacock WJ; Dennis ES
    Plant J; 2009 Aug; 59(3):488-98. PubMed ID: 19368695
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.