BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 32624508)

  • 21. Extremely Low Lattice Thermal Conductivity Leading to Superior Thermoelectric Performance in Cu
    Zhang T; Yu T; Ning S; Zhang Z; Qi N; Jiang M; Chen Z
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):32453-32462. PubMed ID: 37368823
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring structural, mechanical, and thermoelectric properties of half-Heusler compounds RhBiX (X = Ti, Zr, Hf): A first-principles investigation.
    Wei J; Guo Y; Wang G
    RSC Adv; 2023 Apr; 13(17):11513-11524. PubMed ID: 37063731
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Understanding the electronic and phonon transport properties of a thermoelectric material BiCuSeO: a first-principles study.
    Fan DD; Liu HJ; Cheng L; Zhang J; Jiang PH; Wei J; Liang JH; Shi J
    Phys Chem Chem Phys; 2017 May; 19(20):12913-12920. PubMed ID: 28474043
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Crystal structure, stability, and transport properties of Li
    Mahmoudi S; Golzan MM; Nemati-Kande E
    Sci Rep; 2024 May; 14(1):12201. PubMed ID: 38806656
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys.
    Chauhan NS; Bhattacharjee D; Maiti T; Kolen'ko YV; Miyazaki Y; Bhattacharya A
    ACS Appl Mater Interfaces; 2022 Dec; 14(49):54736-54747. PubMed ID: 36450123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reduced Lattice Thermal Conductivity for Half-Heusler ZrNiSn through Cryogenic Mechanical Alloying.
    Bahrami A; Ying P; Wolff U; Rodríguez NP; Schierning G; Nielsch K; He R
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38561-38568. PubMed ID: 34351145
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High thermoelectric performance of topological half-Heusler compound LaPtBi achieved by hydrostatic pressure.
    Ning S; Huang S; Zhang Z; Zhang R; Qi N; Chen Z
    Phys Chem Chem Phys; 2020 Jul; 22(26):14621-14629. PubMed ID: 32567608
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low lattice thermal conductivities and good thermoelectric performance of hexagonal antiperovskites X(Ba & Sr)
    Zeng S; Yan X; Shen Q; Tu Y; Huang H; Li G
    Phys Chem Chem Phys; 2023 Oct; 25(39):26507-26514. PubMed ID: 37782050
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comprehensive investigation of electronic structure, phonon spectrum and thermoelectric performance of LuMSb (M = Ni, Pd, Pt) half Heusler compounds from first principles.
    Satyam JK; Saini SM
    J Comput Chem; 2024 Jan; 45(1):25-34. PubMed ID: 37638645
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermoelectric transport properties of XAgP (X = Sr and Ba) from first principles.
    Dhawan R; Zeeshan M; Nautiyal T; van den Brink J; Kandpal HC
    J Phys Condens Matter; 2022 Sep; 34(45):. PubMed ID: 36063811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of C and N Addition on Thermoelectric Properties of TiNiSn Half-Heusler Compounds.
    Dow HS; Kim WS; Shin WH
    Materials (Basel); 2018 Feb; 11(2):. PubMed ID: 29419772
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ultralow lattice thermal conductivity at room temperature in 2D KCuSe from first-principles calculations.
    Xu Z; Wang C; Wu X; Hu L; Liu Y; Gao G
    Phys Chem Chem Phys; 2022 Feb; 24(5):3296-3302. PubMed ID: 35050286
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potential thermoelectric materials: first-principles prediction of low lattice thermal conductivity of two-dimensional (2D) orthogonal ScX
    Bi S; Sun Z; Yuan K; Chang Z; Zhang X; Gao Y; Tang D
    Phys Chem Chem Phys; 2021 Oct; 23(41):23718-23729. PubMed ID: 34642727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. First-principles electronic structure, phonon properties, lattice thermal conductivity and prediction of figure of merit of FeVSb half-Heusler.
    Shastri SS; Pandey SK
    J Phys Condens Matter; 2020 Feb; 33(8):085704. PubMed ID: 33212432
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced Thermoelectric Properties of Nb-Doped Ti(FeCoNi)Sb Pseudo-Ternary Half-Heusler Alloys Prepared Using the Microwave Method.
    Zhang R; Kong J; Hou Y; Zhao L; Zhu J; Li C; Zhao D
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629820
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of the electronic structure, mechanical, and thermoelectric properties of novel semiconductor compounds: XYTe (X = Ti/Sc; Y = Fe/Co).
    Ahmad A; Liu CJ
    Phys Chem Chem Phys; 2023 Jun; 25(24):16587-16596. PubMed ID: 37310202
    [TBL] [Abstract][Full Text] [Related]  

  • 37. First principles investigation on elastic, optoelectronic and thermoelectric properties of KYX (X = Ge, Sn and Pb) half-heusler compounds.
    Naseri M; Hoat DM
    J Mol Graph Model; 2019 Nov; 92():249-255. PubMed ID: 31422197
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Thermoelectric transport properties of (Ti
    Rabin D; Kyratsi T; Fuks D; Gelbstein Y
    Phys Chem Chem Phys; 2020 Jan; 22(3):1566-1574. PubMed ID: 31872833
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Enhancing Thermoelectric Properties through Control of Nickel Interstitials and Phase Separation in Heusler/Half-Heusler TiNi
    Levin EE; Long F; Douglas JE; Buffon MLC; Lamontagne LK; Pollock TM; Seshadri R
    Materials (Basel); 2018 May; 11(6):. PubMed ID: 29843364
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultralow lattice thermal conductivity induced high thermoelectric performance in the δ-Cu
    Yu J; Li T; Nie G; Zhang BP; Sun Q
    Nanoscale; 2019 May; 11(21):10306-10313. PubMed ID: 31099817
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.