BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 32624537)

  • 1. [Aberrant RNA splicing and development of hematological malignancies].
    Yoshimi A
    Rinsho Ketsueki; 2020; 61(6):634-642. PubMed ID: 32624537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis.
    Yoshimi A; Lin KT; Wiseman DH; Rahman MA; Pastore A; Wang B; Lee SC; Micol JB; Zhang XJ; de Botton S; Penard-Lacronique V; Stein EM; Cho H; Miles RE; Inoue D; Albrecht TR; Somervaille TCP; Batta K; Amaral F; Simeoni F; Wilks DP; Cargo C; Intlekofer AM; Levine RL; Dvinge H; Bradley RK; Wagner EJ; Krainer AR; Abdel-Wahab O
    Nature; 2019 Oct; 574(7777):273-277. PubMed ID: 31578525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [RNA splicing dysregulation in hematological malignancies].
    Yoshida M; Yamauchi H; Sakumoto M; Yoshimi A
    Rinsho Ketsueki; 2023; 64(7):646-653. PubMed ID: 37544725
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SRSF2 mutations drive oncogenesis by activating a global program of aberrant alternative splicing in hematopoietic cells.
    Liang Y; Tebaldi T; Rejeski K; Joshi P; Stefani G; Taylor A; Song Y; Vasic R; Maziarz J; Balasubramanian K; Ardasheva A; Ding A; Quattrone A; Halene S
    Leukemia; 2018 Dec; 32(12):2659-2671. PubMed ID: 29858584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biological relevance of alternative splicing in hematologic malignancies.
    Szelest M; Giannopoulos K
    Mol Med; 2024 May; 30(1):62. PubMed ID: 38760666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Hematological malignancies driven by aberrant splicing].
    Zang W; Saika W; Aoyama Y; Inoue D
    Rinsho Ketsueki; 2023; 64(9):875-883. PubMed ID: 37793861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disease-associated mutation in SRSF2 misregulates splicing by altering RNA-binding affinities.
    Zhang J; Lieu YK; Ali AM; Penson A; Reggio KS; Rabadan R; Raza A; Mukherjee S; Manley JL
    Proc Natl Acad Sci U S A; 2015 Aug; 112(34):E4726-34. PubMed ID: 26261309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Splicing Factor Mutations in Cancer.
    Bejar R
    Adv Exp Med Biol; 2016; 907():215-28. PubMed ID: 27256388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alteration of the SETBP1 gene and splicing pathway genes SF3B1, U2AF1, and SRSF2 in childhood acute myeloid leukemia.
    Choi HW; Kim HR; Baek HJ; Kook H; Cho D; Shin JH; Suh SP; Ryang DW; Shin MG
    Ann Lab Med; 2015 Jan; 35(1):118-22. PubMed ID: 25553291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Splicing dysregulation in human hematologic malignancies: beyond splicing mutations.
    De Kesel J; Fijalkowski I; Taylor J; Ntziachristos P
    Trends Immunol; 2022 Aug; 43(8):674-686. PubMed ID: 35850914
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genetic and epigenetic pathways in myelodysplastic syndromes: A brief overview.
    Jhanwar SC
    Adv Biol Regul; 2015 May; 58():28-37. PubMed ID: 25499150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA splicing factors in normal hematopoiesis and hematologic malignancies: novel therapeutic targets and strategies.
    Li Z; He Z; Wang J; Kong G
    J Leukoc Biol; 2023 Feb; 113(2):149-163. PubMed ID: 36822179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acquired mutations that affect pre-mRNA splicing in hematologic malignancies and solid tumors.
    Scott LM; Rebel VI
    J Natl Cancer Inst; 2013 Oct; 105(20):1540-9. PubMed ID: 24052622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SRSF2 plays an unexpected role as reader of m
    Ma HL; Bizet M; Soares Da Costa C; Murisier F; de Bony EJ; Wang MK; Yoshimi A; Lin KT; Riching KM; Wang X; Beckman JI; Arya S; Droin N; Calonne E; Hassabi B; Zhang QY; Li A; Putmans P; Malbec L; Hubert C; Lan J; Mies F; Yang Y; Solary E; Daniels DL; Gupta YK; Deplus R; Abdel-Wahab O; Yang YG; Fuks F
    Mol Cell; 2023 Dec; 83(23):4239-4254.e10. PubMed ID: 38065062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Defects in spliceosomal machinery: a new pathway of leukaemogenesis.
    Maciejewski JP; Padgett RA
    Br J Haematol; 2012 Jul; 158(2):165-173. PubMed ID: 22594801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Splicing factor gene mutations in the myelodysplastic syndromes: impact on disease phenotype and therapeutic applications.
    Pellagatti A; Boultwood J
    Adv Biol Regul; 2017 Jan; 63():59-70. PubMed ID: 27639445
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-mRNA splicing: role of epigenetics and implications in disease.
    Khan DH; Jahan S; Davie JR
    Adv Biol Regul; 2012 Sep; 52(3):377-88. PubMed ID: 22884031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coexisting and cooperating mutations in NPM1-mutated acute myeloid leukemia.
    Patel JL; Schumacher JA; Frizzell K; Sorrells S; Shen W; Clayton A; Jattani R; Kelley TW
    Leuk Res; 2017 May; 56():7-12. PubMed ID: 28152414
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA splicing, cell signaling, and response to therapies.
    Abou Faycal C; Gazzeri S; Eymin B
    Curr Opin Oncol; 2016 Jan; 28(1):58-64. PubMed ID: 26575690
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Understanding and therapeutic targeting of aberrant mRNA splicing mechanisms in oncogenesis].
    Tanaka A; Kobayashi S; Xiao M; Inoue D
    Rinsho Ketsueki; 2020; 61(6):643-650. PubMed ID: 32624538
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.