These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 32624728)
1. Metabolic response of Zobel S; Kuepper J; Ebert B; Wierckx N; Blank LM Eng Life Sci; 2017 Jan; 17(1):47-57. PubMed ID: 32624728 [No Abstract] [Full Text] [Related]
2. Systems Analysis of NADH Dehydrogenase Mutants Reveals Flexibility and Limits of Pseudomonas taiwanensis VLB120's Metabolism. Nies SC; Dinger R; Chen Y; Wordofa GG; Kristensen M; Schneider K; Büchs J; Petzold CJ; Keasling JD; Blank LM; Ebert BE Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245760 [TBL] [Abstract][Full Text] [Related]
3. Effect of different levels of NADH availability on metabolic fluxes of Escherichia coli chemostat cultures in defined medium. Sánchez AM; Bennett GN; San KY J Biotechnol; 2005 Jun; 117(4):395-405. PubMed ID: 15925720 [TBL] [Abstract][Full Text] [Related]
4. Paving the way for synthetic C1 - Metabolism in Pseudomonas putida through the reductive glycine pathway. Bruinsma L; Wenk S; Claassens NJ; Martins Dos Santos VAP Metab Eng; 2023 Mar; 76():215-224. PubMed ID: 36804222 [TBL] [Abstract][Full Text] [Related]
5. Core and auxiliary functions of one-carbon metabolism in Turlin J; Puiggené Ò; Donati S; Wirth NT; Nikel PI mSystems; 2023 Jun; 8(3):e0000423. PubMed ID: 37273222 [TBL] [Abstract][Full Text] [Related]
6. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1. Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342 [TBL] [Abstract][Full Text] [Related]
7. A rapid method to estimate NADH regeneration rates in living cells. Kuepper J; Zobel S; Wierckx N; Blank LM J Microbiol Methods; 2016 Nov; 130():92-94. PubMed ID: 27592588 [TBL] [Abstract][Full Text] [Related]
8. Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. Blank LM; Ionidis G; Ebert BE; Bühler B; Schmid A FEBS J; 2008 Oct; 275(20):5173-90. PubMed ID: 18803670 [TBL] [Abstract][Full Text] [Related]
9. Cofactor Specificity of Glucose-6-Phosphate Dehydrogenase Isozymes in Pseudomonas putida Reveals a General Principle Underlying Glycolytic Strategies in Bacteria. Volke DC; Olavarría K; Nikel PI mSystems; 2021 Mar; 6(2):. PubMed ID: 33727391 [TBL] [Abstract][Full Text] [Related]
10. Effect of different levels of NADH availability on metabolite distribution in Escherichia coli fermentation in minimal and complex media. Berríos-Rivera SJ; Sánchez AM; Bennett GN; San KY Appl Microbiol Biotechnol; 2004 Sep; 65(4):426-32. PubMed ID: 15069588 [TBL] [Abstract][Full Text] [Related]
11. Response of Pseudomonas putida KT2440 to increased NADH and ATP demand. Ebert BE; Kurth F; Grund M; Blank LM; Schmid A Appl Environ Microbiol; 2011 Sep; 77(18):6597-605. PubMed ID: 21803911 [TBL] [Abstract][Full Text] [Related]
12. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol. Beckers V; Poblete-Castro I; Tomasch J; Wittmann C Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075 [TBL] [Abstract][Full Text] [Related]
13. Integrated rational and evolutionary engineering of genome-reduced Pseudomonas putida strains promotes synthetic formate assimilation. Turlin J; Dronsella B; De Maria A; Lindner SN; Nikel PI Metab Eng; 2022 Nov; 74():191-205. PubMed ID: 36328297 [TBL] [Abstract][Full Text] [Related]
14. Metabolic impact of heterologous protein production in Pseudomonas putida: Insights into carbon and energy flux control. Vogeleer P; Millard P; Arbulú AO; Pflüger-Grau K; Kremling A; Létisse F Metab Eng; 2024 Jan; 81():26-37. PubMed ID: 37918614 [TBL] [Abstract][Full Text] [Related]
15. Quantifying NAD(P)H production in the upper Entner-Doudoroff pathway from Pseudomonas putida KT2440. Olavarria K; Marone MP; da Costa Oliveira H; Roncallo JC; da Costa Vasconcelos FN; da Silva LF; Gomez JG FEBS Open Bio; 2015; 5():908-15. PubMed ID: 26702395 [TBL] [Abstract][Full Text] [Related]
16. In vivo role of FdhD and FdmE in formate metabolism in Pseudomonas putida: Redundancy and expression in the stationary phase. Roca A; Ramos JL Environ Microbiol Rep; 2009 Jun; 1(3):208-13. PubMed ID: 23765795 [TBL] [Abstract][Full Text] [Related]
17. Reconciling in vivo and in silico key biological parameters of Pseudomonas putida KT2440 during growth on glucose under carbon-limited condition. van Duuren JB; Puchałka J; Mars AE; Bücker R; Eggink G; Wittmann C; Dos Santos VA BMC Biotechnol; 2013 Oct; 13():93. PubMed ID: 24168623 [TBL] [Abstract][Full Text] [Related]
18. Expression of NAD+-dependent formate dehydrogenase in Enterobacter aerogenes and its involvement in anaerobic metabolism and H2 production. Lu Y; Zhao H; Zhang C; Lai Q; Wu X; Xing XH Biotechnol Lett; 2009 Oct; 31(10):1525-30. PubMed ID: 19533026 [TBL] [Abstract][Full Text] [Related]
19. Improvement of hydrogen productivity by introduction of NADH regeneration pathway in Clostridium paraputrificum. Lu Y; Zhang C; Zhao H; Xing XH Appl Biochem Biotechnol; 2012 Jun; 167(4):732-42. PubMed ID: 22592776 [TBL] [Abstract][Full Text] [Related]
20. NADH availability limits asymmetric biocatalytic epoxidation in a growing recombinant Escherichia coli strain. Bühler B; Park JB; Blank LM; Schmid A Appl Environ Microbiol; 2008 Mar; 74(5):1436-46. PubMed ID: 18192422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]