These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 32624742)

  • 1. Downstream process development strategies for effective bioprocesses: Trends, progress, and combinatorial approaches.
    Baumann P; Hubbuch J
    Eng Life Sci; 2017 Nov; 17(11):1142-1158. PubMed ID: 32624742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metaheuristic approaches in biopharmaceutical process development data analysis.
    Gangadharan N; Turner R; Field R; Oliver SG; Slater N; Dikicioglu D
    Bioprocess Biosyst Eng; 2019 Sep; 42(9):1399-1408. PubMed ID: 31119388
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent advances to accelerate purification process development: A review with a focus on vaccines.
    Keulen D; Geldhof G; Bussy OL; Pabst M; Ottens M
    J Chromatogr A; 2022 Aug; 1676():463195. PubMed ID: 35749985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downstream Processing Technologies/Capturing and Final Purification : Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification.
    Singh N; Herzer S
    Adv Biochem Eng Biotechnol; 2018; 165():115-178. PubMed ID: 28795201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioreactor control systems in the biopharmaceutical industry: a critical perspective.
    Mitra S; Murthy GS
    Syst Microbiol Biomanuf; 2022; 2(1):91-112. PubMed ID: 38624976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Straightforward method for calibration of mechanistic cation exchange chromatography models for industrial applications.
    Saleh D; Wang G; Müller B; Rischawy F; Kluters S; Studts J; Hubbuch J
    Biotechnol Prog; 2020 Jul; 36(4):e2984. PubMed ID: 32087049
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-throughput methods for miniaturization and automation of monoclonal antibody purification processes.
    Treier K; Hansen S; Richter C; Diederich P; Hubbuch J; Lester P
    Biotechnol Prog; 2012; 28(3):723-32. PubMed ID: 22467605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sophisticated Cloning, Fermentation, and Purification Technologies for an Enhanced Therapeutic Protein Production: A Review.
    Gupta SK; Shukla P
    Front Pharmacol; 2017; 8():419. PubMed ID: 28725194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antibodies and genetically engineered related molecules: production and purification.
    Roque AC; Lowe CR; Taipa MA
    Biotechnol Prog; 2004; 20(3):639-54. PubMed ID: 15176864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial technologies for biotherapeutics production: Key tools for advanced biopharmaceutical process development and control.
    Zalai D; Kopp J; Kozma B; Küchler M; Herwig C; Kager J
    Drug Discov Today Technol; 2020 Dec; 38():9-24. PubMed ID: 34895644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rational and systematic protein purification process development: the next generation.
    Nfor BK; Verhaert PD; van der Wielen LA; Hubbuch J; Ottens M
    Trends Biotechnol; 2009 Dec; 27(12):673-9. PubMed ID: 19815300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An accelerated approach for mechanistic model based prediction of linear gradient elution ion-exchange chromatography of proteins.
    Shekhawat LK; Tiwari A; Yamamoto S; Rathore AS
    J Chromatogr A; 2022 Sep; 1680():463423. PubMed ID: 36001907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clarification technologies for monoclonal antibody manufacturing processes: Current state and future perspectives.
    Singh N; Arunkumar A; Chollangi S; Tan ZG; Borys M; Li ZJ
    Biotechnol Bioeng; 2016 Apr; 113(4):698-716. PubMed ID: 26302443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generic chromatography-based purification strategies accelerate the development of downstream processes for biopharmaceutical proteins produced in plants.
    Buyel JF; Fischer R
    Biotechnol J; 2014 Apr; 9(4):566-77. PubMed ID: 24478119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antibody disulfide bond reduction and recovery during biopharmaceutical process development-A review.
    Ren T; Tan Z; Ehamparanathan V; Lewandowski A; Ghose S; Li ZJ
    Biotechnol Bioeng; 2021 Aug; 118(8):2829-2844. PubMed ID: 33844277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Establishment of a design space for biopharmaceutical purification processes using DoE.
    Amadeo I; Mauro L; Ortí E; Forno G
    Methods Mol Biol; 2014; 1129():11-27. PubMed ID: 24648063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Fully Integrated Online Platform For Real Time Monitoring Of Multiple Product Quality Attributes In Biopharmaceutical Processes For Monoclonal Antibody Therapeutics.
    Liu Y; Zhang C; Chen J; Fernandez J; Vellala P; Kulkarni TA; Aguilar I; Ritz D; Lan K; Patel P; Liu A
    J Pharm Sci; 2022 Feb; 111(2):358-367. PubMed ID: 34534574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensified Downstream Processing of Monoclonal Antibodies Using Membrane Technology.
    Nadar S; Shooter G; Somasundaram B; Shave E; Baker K; Lua LHL
    Biotechnol J; 2021 Mar; 16(3):e2000309. PubMed ID: 33006254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.