These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32624801)

  • 1. Active extracellular substances of
    Bai MD; Wu SI; Chen CY; Chen JC; Lu WC; Wan HP
    Eng Life Sci; 2017 May; 17(5):561-566. PubMed ID: 32624801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell disruption and lipid extraction for microalgal biorefineries: A review.
    Lee SY; Cho JM; Chang YK; Oh YK
    Bioresour Technol; 2017 Nov; 244(Pt 2):1317-1328. PubMed ID: 28634124
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Progress and Challenges in Microalgal Biodiesel Production.
    Mallick N; Bagchi SK; Koley S; Singh AK
    Front Microbiol; 2016; 7():1019. PubMed ID: 27446055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microalgal lipids biochemistry and biotechnological perspectives.
    Bellou S; Baeshen MN; Elazzazy AM; Aggeli D; Sayegh F; Aggelis G
    Biotechnol Adv; 2014 Dec; 32(8):1476-93. PubMed ID: 25449285
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface-Modified Filter-Based Continuous Recovery of Microalgal Lipid-in-Solvent with High Recovery Efficiency, Long-Term Stability, and Cost Competitiveness.
    Lee D; Kim H; Jeon M; Chang YK; Im SG
    ACS Appl Bio Mater; 2020 Jan; 3(1):263-272. PubMed ID: 35019442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved aqueous extraction of microalgal lipid by combined enzymatic and thermal lysis from wet biomass of Nannochloropsis oceanica.
    Chen L; Li R; Ren X; Liu T
    Bioresour Technol; 2016 Aug; 214():138-143. PubMed ID: 27132220
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production.
    Mutanda T; Ramesh D; Karthikeyan S; Kumari S; Anandraj A; Bux F
    Bioresour Technol; 2011 Jan; 102(1):57-70. PubMed ID: 20624676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disruption of thin- and thick-wall microalgae using high pressure gases: Effects of gas species, pressure and treatment duration on the extraction of proteins and carotenoids.
    Yong TC; Chiu PH; Chen CH; Hung CH; Chen CN
    J Biosci Bioeng; 2020 Apr; 129(4):502-507. PubMed ID: 31732260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cationic surfactant-based method for simultaneous harvesting and cell disruption of a microalgal biomass.
    Huang WC; Kim JD
    Bioresour Technol; 2013 Dec; 149():579-81. PubMed ID: 24128606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiation and quantification of extracellular polymeric substances from microalgae and bacteria in the mixed culture.
    Ren T; Zhou Y; Cui X; Wu B; Rittmann BE
    Water Res; 2024 Jun; 256():121641. PubMed ID: 38643643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.
    Banerjee C; Dubey KK; Shukla P
    Front Microbiol; 2016; 7():432. PubMed ID: 27065986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous cell disruption and lipid extraction in a microalgal biomass using a nonpolar tertiary amine.
    Huang WC; Kim JD
    Bioresour Technol; 2017 May; 232():142-145. PubMed ID: 28219051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.
    Park H; Lee CG
    Biotechnol J; 2016 Nov; 11(11):1461-1470. PubMed ID: 27782372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgal cell disruption via ultrasonic nozzle spraying.
    Wang M; Yuan W
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1111-22. PubMed ID: 25369896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Holistic Approach to Managing Microalgae for Biofuel Applications.
    Show PL; Tang MS; Nagarajan D; Ling TC; Ooi CW; Chang JS
    Int J Mol Sci; 2017 Jan; 18(1):. PubMed ID: 28117737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging green cell disruption techniques to obtain valuable compounds from macro and microalgae: a review.
    Saravana PS; Ummat V; Bourke P; Tiwari BK
    Crit Rev Biotechnol; 2023 Sep; 43(6):904-919. PubMed ID: 35786238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nickel oxide nanoparticle-based method for simultaneous harvesting and disruption of microalgal cells.
    Huang WC; Kim JD
    Bioresour Technol; 2016 Oct; 218():1290-3. PubMed ID: 27481468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dissolved air flotation and centrifugation as methods for oil recovery from ruptured microalgal cells.
    Ghasemi Naghdi F; Schenk PM
    Bioresour Technol; 2016 Oct; 218():428-35. PubMed ID: 27393833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A comparative study on effective cell disruption methods for lipid extraction from microalgae.
    Prabakaran P; Ravindran AD
    Lett Appl Microbiol; 2011 Aug; 53(2):150-4. PubMed ID: 21575021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microalgal drying and cell disruption--recent advances.
    Show KY; Lee DJ; Tay JH; Lee TM; Chang JS
    Bioresour Technol; 2015 May; 184():258-266. PubMed ID: 25465783
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.