These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 32624823)
1. Carotene production from waste cooking oil by Nanou K; Roukas T; Papadakis E; Kotzekidou P Eng Life Sci; 2017 Jul; 17(7):775-780. PubMed ID: 32624823 [TBL] [Abstract][Full Text] [Related]
2. Waste cooking oil: A new substrate for carotene production by Blakeslea trispora in submerged fermentation. Nanou K; Roukas T Bioresour Technol; 2016 Mar; 203():198-203. PubMed ID: 26724551 [TBL] [Abstract][Full Text] [Related]
3. From cheese whey to carotenes by Blakeslea trispora in a bubble column reactor. Roukas T; Varzakakou M; Kotzekidou P Appl Biochem Biotechnol; 2015 Jan; 175(1):182-93. PubMed ID: 25248995 [TBL] [Abstract][Full Text] [Related]
4. Stimulation of the biosynthesis of carotenes by oxidative stress in Blakeslea trispora induced by elevated dissolved oxygen levels in the culture medium. Nanou K; Roukas T Bioresour Technol; 2011 Sep; 102(17):8159-64. PubMed ID: 21708460 [TBL] [Abstract][Full Text] [Related]
5. Oxidative stress response of Blakeslea trispora induced by iron ions during carotene production in shake flask culture. Nanou K; Roukas T Appl Biochem Biotechnol; 2013 Apr; 169(8):2281-9. PubMed ID: 23443721 [TBL] [Abstract][Full Text] [Related]
6. Role of hydrolytic enzymes and oxidative stress in autolysis and morphology of Blakeslea trispora during beta-carotene production in submerged fermentation. Nanou K; Roukas T; Kotzekidou P Appl Microbiol Biotechnol; 2007 Feb; 74(2):447-53. PubMed ID: 17103162 [TBL] [Abstract][Full Text] [Related]
7. Oxidative stress response and morphological changes of Blakeslea trispora induced by butylated hydroxytoluene during carotene production. Nanou K; Roukas T Appl Biochem Biotechnol; 2010 Apr; 160(8):2415-23. PubMed ID: 19653130 [TBL] [Abstract][Full Text] [Related]
8. The role of oxidative stress on carotene production by Blakeslea trispora in submerged fermentation. Roukas T Crit Rev Biotechnol; 2016; 36(3):424-33. PubMed ID: 25600464 [TBL] [Abstract][Full Text] [Related]
9. Production of beta-carotene from beet molasses by Blakeslea trispora in stirred-tank and bubble column reactors: development of a mathematical modeling. Goksungur Y; Mantzouridou F; Roukas T; Kotzekidou P Appl Biochem Biotechnol; 2004 Jan; 112(1):37-54. PubMed ID: 14734837 [TBL] [Abstract][Full Text] [Related]
10. Autolysis of Blakeslea trispora during carotene production from cheese whey in an airlift reactor. Varzakakou M; Roukas T; Papaioannou E; Kotzekidou P; Liakopoulou-Kyriakides M Prep Biochem Biotechnol; 2011; 41(1):7-21. PubMed ID: 21229460 [TBL] [Abstract][Full Text] [Related]
11. Improved β-carotene production by oxidative stress in Blakeslea trispora induced by liquid paraffin. Hu X; Ma X; Tang P; Yuan Q Biotechnol Lett; 2013 Apr; 35(4):559-63. PubMed ID: 23187755 [TBL] [Abstract][Full Text] [Related]
12. Oxidative stress response of Blakeslea trispora induced by H₂O₂ during β-carotene biosynthesis. Wang HB; Luo J; Huang XY; Lu MB; Yu LJ J Ind Microbiol Biotechnol; 2014 Mar; 41(3):555-61. PubMed ID: 24352432 [TBL] [Abstract][Full Text] [Related]
13. Use of metabolic stimulators and inhibitors for enhanced production of beta-carotene and lycopene by Blakeslea trispora NRRL 2895 and 2896. Choudhari SM; Ananthanarayan L; Singhal RS Bioresour Technol; 2008 May; 99(8):3166-73. PubMed ID: 17637505 [TBL] [Abstract][Full Text] [Related]
14. Agro-food wastes utilization by Blakeslea trispora for carotenoids production. Papaioannou EH; Liakopoulou-Kyriakides M Acta Biochim Pol; 2012; 59(1):151-3. PubMed ID: 22428133 [TBL] [Abstract][Full Text] [Related]
15. Scale translation from shaken to diffused bubble aerated systems for lycopene production by Blakeslea trispora under stimulated conditions. Mantzouridou FT; Naziri E Appl Microbiol Biotechnol; 2017 Mar; 101(5):1845-1856. PubMed ID: 27822738 [TBL] [Abstract][Full Text] [Related]
16. [Superoxide dismutase and catalase activities in carotenoid-synthesizing fungi Blakeslea trispora and Neurospora crassa under the oxidative stress]. Gessler NN; Sokolov AV; Bykhovskiĭ VIa; Belozerskaia TA Prikl Biokhim Mikrobiol; 2002; 38(3):237-42. PubMed ID: 12068573 [TBL] [Abstract][Full Text] [Related]
17. Valorification of crude glycerol for pure fractions of docosahexaenoic acid and β-carotene production by using Schizochytrium limacinum and Blakeslea trispora. Bindea M; Rusu B; Rusu A; Trif M; Leopold LF; Dulf F; Vodnar DC Microb Cell Fact; 2018 Jun; 17(1):97. PubMed ID: 29908562 [TBL] [Abstract][Full Text] [Related]
18. Industrial glycerol as a supplementary carbon source in the production of beta-carotene by Blakeslea trispora. Mantzouridou F; Naziri E; Tsimidou MZ J Agric Food Chem; 2008 Apr; 56(8):2668-75. PubMed ID: 18370396 [TBL] [Abstract][Full Text] [Related]
19. Optimization of beta-carotene production from synthetic medium by Blakeslea trispora: a mathematical modeling. Mantzouridou F; Roukasa T; Kotzekidoua P; Liakopoulou M Appl Biochem Biotechnol; 2002 May; 101(2):153-75. PubMed ID: 12049204 [TBL] [Abstract][Full Text] [Related]
20. Protoplast fusion between Blakeslea trispora 14,271 (+) and 14,272 (-) enhanced the yield of lycopene and β-carotene. Wang Y; Wang Y; Chen X; Gao N; Wu Y; Zhang H World J Microbiol Biotechnol; 2021 Mar; 37(4):58. PubMed ID: 33655368 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]