These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32624826)

  • 1. Producing defucosylated antibodies with enhanced in vitro antibody-dependent cellular cytotoxicity via
    Zong H; Han L; Ding K; Wang J; Sun T; Zhang X; Cagliero C; Jiang H; Xie Y; Xu J; Zhang B; Zhu J
    Eng Life Sci; 2017 Jul; 17(7):801-808. PubMed ID: 32624826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of FUT8 knockout Chinese hamster ovary cells: an ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity.
    Yamane-Ohnuki N; Kinoshita S; Inoue-Urakubo M; Kusunoki M; Iida S; Nakano R; Wakitani M; Niwa R; Sakurada M; Uchida K; Shitara K; Satoh M
    Biotechnol Bioeng; 2004 Sep; 87(5):614-22. PubMed ID: 15352059
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FX knockout CHO hosts can express desired ratios of fucosylated or afucosylated antibodies with high titers and comparable product quality.
    Louie S; Haley B; Marshall B; Heidersbach A; Yim M; Brozynski M; Tang D; Lam C; Petryniak B; Shaw D; Shim J; Miller A; Lowe JB; Snedecor B; Misaghi S
    Biotechnol Bioeng; 2017 Mar; 114(3):632-644. PubMed ID: 27666939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2018; 1850():237-257. PubMed ID: 30242691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioprocess development of a stable FUT8
    Yuan Y; Zong H; Bai J; Han L; Wang L; Zhang X; Zhang X; Zhang J; Xu C; Zhu J; Zhang B
    Bioprocess Biosyst Eng; 2019 Aug; 42(8):1263-1271. PubMed ID: 30982137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient deletion of FUT8 in CHO cell lines using zinc-finger nucleases yields cells that produce completely nonfucosylated antibodies.
    Malphettes L; Freyvert Y; Chang J; Liu PQ; Chan E; Miller JC; Zhou Z; Nguyen T; Tsai C; Snowden AW; Collingwood TN; Gregory PD; Cost GJ
    Biotechnol Bioeng; 2010 Aug; 106(5):774-83. PubMed ID: 20564614
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Double knockdown of alpha1,6-fucosyltransferase (FUT8) and GDP-mannose 4,6-dehydratase (GMD) in antibody-producing cells: a new strategy for generating fully non-fucosylated therapeutic antibodies with enhanced ADCC.
    Imai-Nishiya H; Mori K; Inoue M; Wakitani M; Iida S; Shitara K; Satoh M
    BMC Biotechnol; 2007 Nov; 7():84. PubMed ID: 18047682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the CRISPR/Cas9 Gene Editing Method for Modulating Antibody Fucosylation in CHO Cells.
    Wang Q; Aliyu L; Chung CY; Rosenberg JN; Yu G; Betenbaugh MJ
    Methods Mol Biol; 2024; 2810():249-271. PubMed ID: 38926284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glycoproteomic Characterization of FUT8 Knock-Out CHO Cells Reveals Roles of FUT8 in the Glycosylation.
    Yang G; Wang Q; Chen L; Betenbaugh MJ; Zhang H
    Front Chem; 2021; 9():755238. PubMed ID: 34778211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering Chinese hamster ovary cells to maximize effector function of produced antibodies using FUT8 siRNA.
    Mori K; Kuni-Kamochi R; Yamane-Ohnuki N; Wakitani M; Yamano K; Imai H; Kanda Y; Niwa R; Iida S; Uchida K; Shitara K; Satoh M
    Biotechnol Bioeng; 2004 Dec; 88(7):901-8. PubMed ID: 15515168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A defucosylated anti-CD317 antibody exhibited enhanced antibody-dependent cellular cytotoxicity against primary myeloma cells in the presence of effectors from patients.
    Ishiguro T; Kawai S; Habu K; Sugimoto M; Shiraiwa H; Iijima S; Ozaki S; Matsumoto T; Yamada-Okabe H
    Cancer Sci; 2010 Oct; 101(10):2227-33. PubMed ID: 20701608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cell lines for stable production of fucose-negative antibodies with enhanced ADCC.
    Kanda Y; Yamane-Ohnuki N; Sakai N; Yamano K; Nakano R; Inoue M; Misaka H; Iida S; Wakitani M; Konno Y; Yano K; Shitara K; Hosoi S; Satoh M
    Biotechnol Bioeng; 2006 Jul; 94(4):680-8. PubMed ID: 16609957
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of FX
    Liu W; Padmashali R; Monzon OQ; Lundberg D; Jin S; Dwyer B; Lee YJ; Korde A; Park S; Pan C; Zhang B
    Biotechnol Prog; 2021 Jan; 37(1):e3061. PubMed ID: 32748555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-hairpin-RNA-mediated silencing of fucosyltransferase 8 in Chinese-hamster ovary cells for the production of antibodies with enhanced antibody immune effector function.
    Beuger V; Künkele KP; Koll H; Gärtner A; Bähner M; Burtscher H; Klein C
    Biotechnol Appl Biochem; 2009 May; 53(Pt 1):31-7. PubMed ID: 19032154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a GDP-mannose 4,6-dehydratase (GMD) knockout host cell line: a new strategy for generating completely non-fucosylated recombinant therapeutics.
    Kanda Y; Imai-Nishiya H; Kuni-Kamochi R; Mori K; Inoue M; Kitajima-Miyama K; Okazaki A; Iida S; Shitara K; Satoh M
    J Biotechnol; 2007 Jun; 130(3):300-10. PubMed ID: 17559959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity.
    Shinkawa T; Nakamura K; Yamane N; Shoji-Hosaka E; Kanda Y; Sakurada M; Uchida K; Anazawa H; Satoh M; Yamasaki M; Hanai N; Shitara K
    J Biol Chem; 2003 Jan; 278(5):3466-73. PubMed ID: 12427744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of biological activity among nonfucosylated therapeutic IgG1 antibodies with three different N-linked Fc oligosaccharides: the high-mannose, hybrid, and complex types.
    Kanda Y; Yamada T; Mori K; Okazaki A; Inoue M; Kitajima-Miyama K; Kuni-Kamochi R; Nakano R; Yano K; Kakita S; Shitara K; Satoh M
    Glycobiology; 2007 Jan; 17(1):104-18. PubMed ID: 17012310
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inactivation of GDP-fucose transporter gene (Slc35c1) in CHO cells by ZFNs, TALENs and CRISPR-Cas9 for production of fucose-free antibodies.
    Chan KF; Shahreel W; Wan C; Teo G; Hayati N; Tay SJ; Tong WH; Yang Y; Rudd PM; Zhang P; Song Z
    Biotechnol J; 2016 Mar; 11(3):399-414. PubMed ID: 26471004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of afucosylated antibodies in CHO cells by coexpression of an anti-FUT8 intrabody.
    Joubert S; Guimond J; Perret S; Malenfant F; Elahi SM; Marcil A; Parat M; Gilbert M; Lenferink AEG; Baardsnes J; Durocher Y
    Biotechnol Bioeng; 2022 Aug; 119(8):2206-2220. PubMed ID: 35509261
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of DNA uptake in FUT8-deleted CHO cells for transient production of afucosylated antibodies.
    Wong AW; Baginski TK; Reilly DE
    Biotechnol Bioeng; 2010 Aug; 106(5):751-63. PubMed ID: 20564613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.