These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 32624826)
21. Rapid Antibody Glycoengineering in Chinese Hamster Ovary Cells. Marbiah M; Kotidis P; Donini R; Gómez IA; Jimenez Del Val I; Haslam SM; Polizzi KM; Kontoravdi C J Vis Exp; 2022 Jun; (184):. PubMed ID: 35723478 [TBL] [Abstract][Full Text] [Related]
22. Non-fucosylated therapeutic antibodies as next-generation therapeutic antibodies. Satoh M; Iida S; Shitara K Expert Opin Biol Ther; 2006 Nov; 6(11):1161-73. PubMed ID: 17049014 [TBL] [Abstract][Full Text] [Related]
23. Augmentation of antibody-dependent cellular cytotoxicity with defucosylated monoclonal antibodies in patients with GI-tract cancer. Nakajima T; Okayama H; Ashizawa M; Noda M; Aoto K; Saito M; Monma T; Ohki S; Shibata M; Takenoshita S; Kono K Oncol Lett; 2018 Feb; 15(2):2604-2610. PubMed ID: 29434980 [TBL] [Abstract][Full Text] [Related]
24. Establishment of P38Bf, a Core-Fucose-Deficient Mouse-Canine Chimeric Antibody Against Dog Podoplanin. Kato Y; Mizuno T; Yamada S; Nakamura T; Itai S; Yanaka M; Sano M; Kaneko MK Monoclon Antib Immunodiagn Immunother; 2018 Nov; 37(5):218-223. PubMed ID: 30362926 [TBL] [Abstract][Full Text] [Related]
25. [Potelligent antibodies as next generation therapeutic antibodies]. Shitara K Yakugaku Zasshi; 2009 Jan; 129(1):3-9. PubMed ID: 19122430 [TBL] [Abstract][Full Text] [Related]
26. IgG subclass-independent improvement of antibody-dependent cellular cytotoxicity by fucose removal from Asn297-linked oligosaccharides. Niwa R; Natsume A; Uehara A; Wakitani M; Iida S; Uchida K; Satoh M; Shitara K J Immunol Methods; 2005 Nov; 306(1-2):151-60. PubMed ID: 16219319 [TBL] [Abstract][Full Text] [Related]
27. Cross-species higher sensitivities of FcγRIIIA/FcγRIV to afucosylated IgG for enhanced ADCC. Mao C; Near R; Zhong X; Gao W Antib Ther; 2021 Jul; 4(3):159-170. PubMed ID: 34485821 [TBL] [Abstract][Full Text] [Related]
28. Defucosylated chimeric anti-CC chemokine receptor 4 IgG1 with enhanced antibody-dependent cellular cytotoxicity shows potent therapeutic activity to T-cell leukemia and lymphoma. Niwa R; Shoji-Hosaka E; Sakurada M; Shinkawa T; Uchida K; Nakamura K; Matsushima K; Ueda R; Hanai N; Shitara K Cancer Res; 2004 Mar; 64(6):2127-33. PubMed ID: 15026353 [TBL] [Abstract][Full Text] [Related]
29. Development of a pre-glycoengineered CHO-K1 host cell line for the expression of antibodies with enhanced Fc mediated effector function. Popp O; Moser S; Zielonka J; Rüger P; Hansen S; Plöttner O MAbs; 2018; 10(2):290-303. PubMed ID: 29173063 [TBL] [Abstract][Full Text] [Related]
30. Importance of the Side Chain at Position 296 of Antibody Fc in Interactions with FcγRIIIa and Other Fcγ Receptors. Isoda Y; Yagi H; Satoh T; Shibata-Koyama M; Masuda K; Satoh M; Kato K; Iida S PLoS One; 2015; 10(10):e0140120. PubMed ID: 26444434 [TBL] [Abstract][Full Text] [Related]
32. CHO-gmt5, a novel CHO glycosylation mutant for producing afucosylated and asialylated recombinant antibodies. Haryadi R; Zhang P; Chan KF; Song Z Bioengineered; 2013; 4(2):90-4. PubMed ID: 22989990 [TBL] [Abstract][Full Text] [Related]
33. One-step generation of triple knockout CHO cell lines using CRISPR/Cas9 and fluorescent enrichment. Grav LM; Lee JS; Gerling S; Kallehauge TB; Hansen AH; Kol S; Lee GM; Pedersen LE; Kildegaard HF Biotechnol J; 2015 Sep; 10(9):1446-56. PubMed ID: 25864574 [TBL] [Abstract][Full Text] [Related]
34. Impacts of fast production of afucosylated antibodies and Fc mutants in ExpiCHO-S™ for enhancing FcγRIIIa binding and NK cell activation. Zhong X; Schenk J; Sakorafas P; Chamberland J; Tam A; Thomas LM; Yan G; D' Antona AM; Lin L; Nocula-Lugowska M; Zhang Y; Sousa E; Cohen J; Gu L; Abel M; Donahue J; Lim S; Meade C; Zhou J; Riegel L; Birch A; Fennell BJ; Franklin E; Gomes JM; Tzvetkova B; Scarcelli JJ J Biotechnol; 2022 Dec; 360():79-91. PubMed ID: 36341973 [TBL] [Abstract][Full Text] [Related]
35. Enhancement of the antibody-dependent cellular cytotoxicity of low-fucose IgG1 Is independent of FcgammaRIIIa functional polymorphism. Niwa R; Hatanaka S; Shoji-Hosaka E; Sakurada M; Kobayashi Y; Uehara A; Yokoi H; Nakamura K; Shitara K Clin Cancer Res; 2004 Sep; 10(18 Pt 1):6248-55. PubMed ID: 15448014 [TBL] [Abstract][Full Text] [Related]
36. Fucose removal from complex-type oligosaccharide enhances the antibody-dependent cellular cytotoxicity of single-gene-encoded bispecific antibody comprising of two single-chain antibodies linked to the antibody constant region. Natsume A; Wakitani M; Yamane-Ohnuki N; Shoji-Hosaka E; Niwa R; Uchida K; Satoh M; Shitara K J Biochem; 2006 Sep; 140(3):359-68. PubMed ID: 16861252 [TBL] [Abstract][Full Text] [Related]
37. Carboxypeptidase D is the only enzyme responsible for antibody C-terminal lysine cleavage in Chinese hamster ovary (CHO) cells. Hu Z; Zhang H; Haley B; Macchi F; Yang F; Misaghi S; Elich J; Yang R; Tang Y; Joly JC; Snedecor BR; Shen A Biotechnol Bioeng; 2016 Oct; 113(10):2100-6. PubMed ID: 26989081 [TBL] [Abstract][Full Text] [Related]
38. Identification of functional elements of the GDP-fucose transporter SLC35C1 using a novel Chinese hamster ovary mutant. Zhang P; Haryadi R; Chan KF; Teo G; Goh J; Pereira NA; Feng H; Song Z Glycobiology; 2012 Jul; 22(7):897-911. PubMed ID: 22492235 [TBL] [Abstract][Full Text] [Related]
39. Establishment of serum-free adapted Chinese hamster ovary cells with double knockout of GDP-mannose-4,6-dehydratase and GDP-fucose transporter. Misaki R; Iwasaki M; Takechi H; Yamano-Adachi N; Ohashi T; Kajiura H; Fujiyama K Cytotechnology; 2022 Feb; 74(1):163-179. PubMed ID: 35185292 [TBL] [Abstract][Full Text] [Related]
40. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Lee JS; Grav LM; Lewis NE; Faustrup Kildegaard H Biotechnol J; 2015 Jul; 10(7):979-94. PubMed ID: 26058577 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]