BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 32624883)

  • 21.
    Calzadiaz-Ramirez L; Calvó-Tusell C; Stoffel GMM; Lindner SN; Osuna S; Erb TJ; Garcia-Borràs M; Bar-Even A; Acevedo-Rocha CG
    ACS Catal; 2020 Jul; 10(14):7512-7525. PubMed ID: 32733773
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Regeneration of nicotinamide coenzymes: principles and applications for the synthesis of chiral compounds.
    Weckbecker A; Gröger H; Hummel W
    Adv Biochem Eng Biotechnol; 2010; 120():195-242. PubMed ID: 20182929
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Improved soluble expression and use of recombinant human renalase.
    Morrison CS; Paskaleva EE; Rios MA; Beusse TR; Blair EM; Lin LQ; Hu JR; Gorby AH; Dodds DR; Armiger WB; Dordick JS; Koffas MAG
    PLoS One; 2020; 15(11):e0242109. PubMed ID: 33180865
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The role of ala198 in the stability and coenzyme specificity of bacterial formate dehydrogenases.
    Alekseeva AA; Fedorchuk VV; Zarubina SA; Sadykhov EG; Matorin AD; Savin SS; Tishkov VI
    Acta Naturae; 2015; 7(1):60-9. PubMed ID: 25927002
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial surface displaying formate dehydrogenase and its application in optical detection of formate.
    Liu A; Feng R; Liang B
    Enzyme Microb Technol; 2016 Sep; 91():59-65. PubMed ID: 27444330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Separation and characterization of NAD- and NADP-specific succinate-semialdehyde dehydrogenase from Escherichia coli K-12 3300.
    Cozzani I; Fazio AM; Felici E; Barletta G
    Biochim Biophys Acta; 1980 Jun; 613(2):309-17. PubMed ID: 7004491
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual coenzyme specificity of Archaeoglobus fulgidus HMG-CoA reductase.
    Kim DY; Stauffacher CV; Rodwell VW
    Protein Sci; 2000 Jun; 9(6):1226-34. PubMed ID: 10892815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NADP-malic enzyme from the C4 plant Flaveria bidentis: nucleotide substrate specificity.
    Ashton AR
    Arch Biochem Biophys; 1997 Sep; 345(2):251-8. PubMed ID: 9308897
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning, expression, and biochemical characterization of a novel NADP
    Bakonyi D; Hummel W
    Enzyme Microb Technol; 2017 Apr; 99():16-24. PubMed ID: 28193327
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cloning, purification, and characterization of an organic solvent-tolerant chitinase, MtCh509, from
    Lee HJ; Lee YS; Choi YL
    Biotechnol Biofuels; 2018; 11():303. PubMed ID: 30455732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Improving the purification of NAD+-dependent formate dehydrogenase from Candida methylica.
    Ordu EB; Karagüler NG
    Prep Biochem Biotechnol; 2007; 37(4):333-41. PubMed ID: 17849288
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Purification and properties of glucose-6-phosphate dehydrogenase (NADP+/NAD+) and 6-phosphogluconate dehydrogenase (NADP+/NAD+) from methanol-grown Pseudomonas C.
    Ben-Bassat A; Goldberg I
    Biochim Biophys Acta; 1980 Jan; 611(1):1-10. PubMed ID: 7350909
    [TBL] [Abstract][Full Text] [Related]  

  • 34. NAD+-Dependent Formate Dehydrogenase from Themotolerant Yeast Ogataea parapolymorpha: Properties and Protein Engineering of the N-Terminal Sequence.
    Pometun AA; Shaposhnikov LA; Zubanova SA; Kovalevskii RP; Atroshenko DL; Pometun EV; Savin SS; Tishkov VI
    Biochemistry (Mosc); 2023 Sep; 88(9):1378-1389. PubMed ID: 37770404
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Regulation of coenzyme utilization by bovine liver glutamate dehydrogenase: investigations using thionicotinamide analogues of NAD and NADP in a dual wavelength assay.
    Male KB; Storey KB
    Int J Biochem; 1982; 14(12):1083-9. PubMed ID: 7173489
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of an HMG-CoA reductase from Listeria monocytogenes that exhibits dual coenzyme specificity.
    Theivagt AE; Amanti EN; Beresford NJ; Tabernero L; Friesen JA
    Biochemistry; 2006 Dec; 45(48):14397-406. PubMed ID: 17128979
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formate dehydrogenase in rice plant: growth stimulation effect of formate in rice plant.
    Shiraishi T; Fukusaki E; Kobayashi A
    J Biosci Bioeng; 2000; 89(3):241-6. PubMed ID: 16232736
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual coenzyme specificity of photosynthetic glyceraldehyde-3-phosphate dehydrogenase interpreted by the crystal structure of A4 isoform complexed with NAD.
    Falini G; Fermani S; Ripamonti A; Sabatino P; Sparla F; Pupillo P; Trost P
    Biochemistry; 2003 Apr; 42(16):4631-9. PubMed ID: 12705826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Amino acid substitutions in the yeast Pichia stipitis xylitol dehydrogenase coenzyme-binding domain affect the coenzyme specificity.
    Metzger MH; Hollenberg CP
    Eur J Biochem; 1995 Feb; 228(1):50-4. PubMed ID: 7883010
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.