BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32624884)

  • 41. Permeabilized probiotic Lactobacillus plantarum as a source of β-galactosidase for the synthesis of prebiotic galactooligosaccharides.
    Gobinath D; Prapulla SG
    Biotechnol Lett; 2014 Jan; 36(1):153-7. PubMed ID: 24078132
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests.
    Argyri AA; Zoumpopoulou G; Karatzas KA; Tsakalidou E; Nychas GJ; Panagou EZ; Tassou CC
    Food Microbiol; 2013 Apr; 33(2):282-91. PubMed ID: 23200662
    [TBL] [Abstract][Full Text] [Related]  

  • 43. An improved process of isomaltooligosaccharide production in kimchi involving the addition of a Leuconostoc starter and sugars.
    Cho SK; Eom HJ; Moon JS; Lim SB; Kim YK; Lee KW; Han NS
    Int J Food Microbiol; 2014 Jan; 170():61-4. PubMed ID: 24291182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fermentation of non-digestible raffinose family oligosaccharides and galactomannans by probiotics.
    Zartl B; Silberbauer K; Loeppert R; Viernstein H; Praznik W; Mueller M
    Food Funct; 2018 Mar; 9(3):1638-1646. PubMed ID: 29465736
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Capillary electrophoresis analysis of glucooligosaccharide regioisomers.
    Joucla G; Brando T; Remaud-Simeon M; Monsan P; Puzo G
    Electrophoresis; 2004 Mar; 25(6):861-9. PubMed ID: 15004847
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Lime application for the efficient production of nutraceutical glucooligosaccharides from Leuconostoc mesenteroides NRRL B-742 (ATCC13146).
    Moon YH; Madsen L; Chung CH; Kim D; Day DF
    J Ind Microbiol Biotechnol; 2015 Feb; 42(2):279-85. PubMed ID: 25533635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Catalytic Interactions and Molecular Docking of Bile Salt Hydrolase (BSH) from
    Yadav R; Singh PK; Puniya AK; Shukla P
    Front Microbiol; 2016; 7():2116. PubMed ID: 28111569
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Glucosylation of raffinose via alternansucrase acceptor reactions.
    Côté GL; Dunlap CA; Vermillion KE
    Carbohydr Res; 2009 Oct; 344(15):1951-9. PubMed ID: 19596226
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enzymatic synthesis and anti-coagulant effect of salicin analogs by using the Leuconostoc mesenteroides glucansucrase acceptor reaction.
    Seo ES; Lee JH; Park JY; Kim D; Han HJ; Robyt JF
    J Biotechnol; 2005 Apr; 117(1):31-8. PubMed ID: 15831245
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Levansucrase and sucrose phoshorylase contribute to raffinose, stachyose, and verbascose metabolism by lactobacilli.
    Teixeira JS; McNeill V; Gänzle MG
    Food Microbiol; 2012 Sep; 31(2):278-84. PubMed ID: 22608234
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Influence of glycosidic linkages and molecular weight on the fermentation of maltose-based oligosaccharides by human gut bacteria.
    Sanz ML; Côté GL; Gibson GR; Rastall RA
    J Agric Food Chem; 2006 Dec; 54(26):9779-84. PubMed ID: 17177501
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis.
    Chanalia P; Gandhi D; Attri P; Dhanda S
    Bioorg Chem; 2018 Apr; 77():176-189. PubMed ID: 29421696
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Evaluation of meat born lactic acid bacteria as protective cultures for the biopreservation of cooked meat products.
    Vermeiren L; Devlieghere F; Debevere J
    Int J Food Microbiol; 2004 Nov; 96(2):149-64. PubMed ID: 15364469
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A method for surveying and classifying Leuconostoc spp. glucansucrases according to strain-dependent acceptor product patterns.
    Côté GL; Leathers TD
    J Ind Microbiol Biotechnol; 2005 Feb; 32(2):53-60. PubMed ID: 15714308
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enzymatic Production of Melibiose from Raffinose by the Levansucrase from Leuconostoc mesenteroides B-512 FMC.
    Xu W; Yu S; Liu Q; Zhang T; Jiang B; Mu W
    J Agric Food Chem; 2017 May; 65(19):3910-3918. PubMed ID: 28453942
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prebiotic Galactooligosaccharide Metabolism by Probiotic Lactobacilli and Bifidobacteria.
    Thongaram T; Hoeflinger JL; Chow J; Miller MJ
    J Agric Food Chem; 2017 May; 65(20):4184-4192. PubMed ID: 28466641
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Evaluation of the effect of malt, wheat and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions.
    Charalampopoulos D; Pandiella SS; Webb C
    Int J Food Microbiol; 2003 Apr; 82(2):133-41. PubMed ID: 12568753
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis and structural characterization of raffinosyl-oligofructosides upon transfructosylation by Lactobacillus gasseri DSM 20604 inulosucrase.
    Díez-Municio M; Herrero M; de Las Rivas B; Muñoz R; Jimeno ML; Moreno FJ
    Appl Microbiol Biotechnol; 2016 Jul; 100(14):6251-6263. PubMed ID: 26940051
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase.
    Robyt JF; Walseth TF
    Carbohydr Res; 1978 Mar; 61():433-45. PubMed ID: 647705
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Leuconostoc mesenteroides NRRL B-512F dextransucrase carboxy-terminal deletions on dextran and oligosaccharide synthesis.
    Monchois V; Reverte A; Remaud-Simeon M; Monsan P; Willemot RM
    Appl Environ Microbiol; 1998 May; 64(5):1644-9. PubMed ID: 9572930
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.